PROBABILITY FORMULA SHEET

SET THEORY DEFINITIONS AND RESULTS

Events F and F are mutually exclusive if ENF = () (the empty set).

Events F1, ..., B, form a partition of event F' C S if

k
() BE;nEj=0foralliandj  (b)| JE=EUEU..UE,=F.
i=1
THE RULES OF PROBABILITY: For any events E and F' in sample space S,
(1)o<P(E)<1
(2) P(S)=1
B)If ENF =@, then P(EUF)=P(E)+ P(F)

Corollaries :
P(E')=1-P(E), P(Q) =0

If Eq, ..., By, are events such that E; N E; = @ for all 4, j, then
k
P (U E) = P(E1) + P(Es) + ... + P(Ey)
i=1

If ENF # 0, then P(EUF) = P(E) + P(F) — P(EN F)

CONDITIONAL PROBABILITY
P(E|F) is the probability that the event E occurs, given that F' has occurred, for an event F' such that
P(F) > 0, and
P(ENF)
P(F)
The probability of the intersection of events F1, ..., F} is given by the chain rule

P(E1N...NEy) = P(E))P(Ey|E\)P(Es|Ey N Ey)...P(Ey|Ey N By N ...0 Ej_1)

P(E|F) =

Events F' and F' are independent if
P(E|F) = P(F) sothat P(ENF) = P(E)P(F).

THEOREM OF TOTAL PROBABILITY : If events Fjy, ..., £}, form a partition of event £ C S
k
P(E) =) P(E|E;)P(E;)
i=1

BAYES THEOREM: If events F1, ..., B}, form a partition of event E C .5,

P(Ei|E) = P(E];E(i])EJ)D(Ei) _ kP(E\E,-)P(Ei)
S P(E|E;)P(E;)

j=1




DISCRETE PROBABILITY DISTRIBUTIONS
The probability distribution of a discrete random variable X is described by the probability mass
function fx, specified by

fx(z) = P[X = 2] re€X = {21,202, ..., Tpn,...}

e Properties of the mass function :

(i) fx(xi) >0 (ii) Z Fxla) =1

e The cumulative distribution function or c.d.f., Fx, is defined by

Fx(z) = P[X < z] r€eR

e Fundamental relationship between fx and Fx :

fx(x1) = Fx(71)
Fx(z) = fx(z)

;< fX (l'z) = FX (.I'l) — FX (l'i—l) for 4 > 2

CONTINUOUS PROBABILITY DISTRIBUTIONS:
The probability distribution of a continuous random variable X is defined by the continuous cumulative
distribution function or c.d.f., Fx, specified by

Fx(z) = P[X < z] forz e X
e The probability density function, or p.d.f., fx, is defined by
fr(@) = - (Fx()} sothat F(r) = /_ Oo Fx(t) dt
e Properties of the density function
() fx(2) >0 zeX (i) /Xfx(x)dx ~1
EXPECTATION AND VARIANCE

For a discrete random variable X taking values in set X with mass function fx, the expectation of
X is defined by

Ep [ X] = Z.Ifx(x)

zeX

For a continuous random variable X taking values in interval X with pdf fx, the expectation of X is
defined by

BrelX] = [ afx(a) do

The variance of X is defined by

Vargy, (X — Eyy {X])2] = Eyy [X2] - {Efx [X]}2 .



DISCRETE PROBABILITY DISTRIBUTIONS

The Bernoulli Distribution X ~ Bernoulli(6)
Range : X = {0,1}

Parameter : 6 € [0, 1]

Mass function :

fx(z) =60%(1—0)t= x € {0,1}

The Binomial Distribution X ~ Binomial(n,0)
Range : X ={0,1,...,n}

Parameters : n € Z+, 6 € [0, 1]

Mass function :

fx(x) = <Z> 0" (1= 0)" " = 0" (1= 0"z € {0,1,..,m)

The Geometric Distribution X ~ Geometric(6)
Range : X ={1,2,...}

Parameter : 6 € (0, 1]

Mass function :

fx(@)=1-0"1' ze{l,2,..}

Distribution function
Fx(z)=1—-(1-6)" xe{l,2,..}

The Negative Binomial Distribution X ~ NegBin(n,0)
Range : X={n,n+1,n+2,..}
Parameter : n € ZT, 6 € (0,1]

Mass function :
x—1

fx(z) = < )0"(1 — )" re{nn+1l,n+2..}.

n—1

The Poisson Distribution X ~ Poisson(\)

Range : X ={0,1,2,...}
Parameter : A € Rt
Mass function :

I[x(x)=—e r€{0,1,2,..}



CONTINUOUS PROBABILITY DISTRIBUTIONS

The Exponential Distribution X ~ Exponential(\)
Range : X = R™"
Parameter : A > 0
Density function :
fx(x) = Ae™® x>0

Distribution function:
fx(z)=1—e® x>0

The Gamma Distribution X ~ Gamma(a, 3)
Range : X =R™*

Parameters : a, 3 >0

Density function :

fx(z) = ﬁ—wo‘_le_ﬁx x>0 where INa) = / t* et dt a>0.
0

fa>1,T(a)=(a-1)I'(a—1),s0ifa=1,2,..., I'(a) = (a— 1)L

If « = 1,2,..., then the Gamma(«a/2,1/2) distribution is known as the Chi-squared distribution
with o degrees of freedom, denoted \2.

If X1, X5 ~ Exponential(\) are independent, then Y = X + Xy ~ Gamma(2, ).

The Normal Distribution X ~ N(u,o?)
Range : X =R

Parameters : —oco < u < o0,0 >0

Density function :

1

27w o?

1/2 1
— 2
fx(w)—< ) exp{—ﬁ(x—u) } —00 <2 <00
If u=0,0 =1, then Y ~ N(0,1) has a standard normal distribution
If X ~N(0,1),and Y = 0 X + p, then Y ~ N(u,0?)
If X ~N(0,1), and Y = X?, then Y ~ Gamma(1/2,1/2) = x3.
If X ~ N(0,1) and Y ~ x2 are independent random variables, then random variable T' = X//Y/«
has a t distribution with o degrees of freedom.

THE POISSON PROCESS

In the Poisson process model for events that occur at random in continuous time with constant rate A,
there are three related probability distribution results

e the numbers of events occurring in disjoint intervals of lengths 1, t2, t3, ... are independent random
variables X1, Xo, X3, ... with X; ~ Poisson (At;)

e the times between the occurrences of events are independent continuous random variables 11, Ts, T3, ...

with T; ~ Exponential (\)

e the time of the nth event is a continuous random variable Y,, with Y,, ~ Gamma (n, \)



THE CENTRAL LIMIT THEOREM

THEOREM: Suppose X1, ..., X, are i.i.d. random variables with Ff, [X;] = p, Vars, [Xi] = 2. If
Zy, is defined by

n
ZXi —nu
_ i=1

no?

Zn
Then, as n — oo, Z, — Z ~ N(0,1) irrespective of the distribution of X7, ..., X,.

MAXIMUM LIKELITHOOD INFERENCE

Suppose a sample x1, ..., x, has been obtained from a probability model specified by mass or density
function f(x;6) depending on parameter(s) 0 lying in parameter space ©. The maximum likelihood
estimate or m.l.e. is produced as follows;

STEP 1 Write down the likelihood function

n

L) = ] £(w::0)

i=1
STEP 2 Take the natural log of the likelihood, and collect terms involving 6.
STEP 3 Find the value of 6, 0, for which logL(0) is maximized in ©.
STEP 4 Verify that § maximizes logL(6).

SAMPLING DISTRIBUTIONS

THEOREM If X, ..., X,, are i.i.d. N(u,0?) random variables, then if

X=1%x =iy x-XP 2= zn:(xi—)‘cy
=1

; ; n—14
=1 =1

are the mean, variance, and adjusted variance, then it can be shown that

1) : Y~N<M,U—2>

n

(n —1)s?

2
o2 ~ Xn—1

(3) : X and s? are statistically independent.



HYPOTHESIS TESTING FOR NORMAL DATA

ONE-SAMPLE TESTS

Suppose i, ...,Tn ~ N (u,a2), with observed sample mean and adjusted variance z,s2. To test the
hypothesis

Hy:nu=c
Hi:pu#c

if o is known, use the Z-test

T —

C . .
m ~ N(O, 1) if HQ is TRUE.

Zz =
If o is unknown, use the T-test

t= (: /?/%) ~ Student(n —1)  if Hy is TRUE

where t,—1 is the Student (n — 1) distribution.

To test Hy : 0% = ¢, calculate test statistic g

—1)s?
q= % ~x2_, if Hyis TRUE

TWO-SAMPLE TESTS
For two data samples of size ny and ns, where 7; and Ty are the sample means, and s? and s3 are the
adjusted sample variances; to test the hypothesis

Hoy :pyp = p2
Hy:py # po

if 01 = 09 = 0 is known use the statistic z, defined by

€Tl — X2

1 1
Oy — + —
nq n9

If 01 = 09 = 0 is unknown, use the statistic ¢, defined by

~N(0,1)  if Hyis TRUE

z =

€Tl — X2

ﬁ a2
Spy/— + —
nq ng

where s% = ((n1 — 1)s? + (n2 — 1)s3)/(n1 + n2 — 2) is the pooled estimate of 0.

t= it Hy is TRUE

To test the hypothesis Hy : 01 = 03, use the F' statistic

2
F =21« Fisher (n1 —1,ny—1)  if Hy is TRUE
55



95 % CONFIDENCE INTERVALS FOR PARAMETERS
Let tx(p) be the pth percentile of a Student ¢ distribution with k& degrees of freedom.

ONE-SAMPLE: 95 % Confidence interval for yu is

T + 1.960/\/n if o is known
T £ t,-1(0.975)s/y/n if o is unknown

95 % Confidence interval for o2 is
[(n—1)s%/cy : (n—1)s%/c1]

where ¢; and ¢ are the 0.025 and 0.975 points of the x2_; distribution.

TWO-SAMPLE: 95 % Confidence interval for py — pso is

1 1
T, — T £1.9604/ — + — if o is known
nq n9
1 1
T1 — To £ty 4ny—2(0.975)spy [ — + — if o is unknown
ni no

95 % Confidence interval for 0% /03 is

&i@ ‘ <cf§§>]

where ¢; and ¢y are the 0.025 and 0.975 points of the Fisher (ny — 1,ng — 1) distribution.

THE CHI-SQUARED AND LIKELTHOOD RATIO TEST

To test the goodness-of-fit of a probability model to a sample of size n, use the chi-squared statistic
k

2
2\~ (Oi—Ej)
=3 T
=1
If Hy is true, then x? approximately has a with k —d — 1 degrees of freedom, where d is the number of
estimated parameters.

For a contingency table with 7 rows and ¢ columns, the x? statistic
r c ~ 2
2 _ (nij—nij)
=)
i=1 j=1 v

for a test of independence has a null distribution that is chi-squared with (r — 1) x (¢ — 1) degrees of

freedom, where
ng.mn.;

Nij = N3.Dj = 1=1,..,r, j=1,...,c

and n;. is the total of the ith row, n; is the total of the jth column, and n is the total number of
observations.

The Likelihood Ratio statistic LR has the same approximate null distribution, and is defined by

LR =2 XT: zc:nij log ZU
ij

i=1 j=1




CLASSIFICATION FOR TWO CLASSES (K =2)

Let fi(z) and f2(x) be the probability functions associated with a (vector) random variable X for
two populations 1 and 2. An object with measurements & must be assigned to either class 1 or class 2.
Let X denote the sample space. Let R1 be that set of x values for which we classify objects into class
1 and Ry = X\R; be the remaining x values, for which we classify objects into class 2.

The conditional probability, P(2|1), of classifying an object into class 2 when, in fact, it is from
class] is:

P(21) = - fi(z) dz.

Similarly, the conditional probability, P(1|2), of classifying an object into class 1 when, in fact, it is
from class 2 is:

P(1]2) = - f2(x) dx

Let p1 be the prior probability of being in class 1 and ps be the prior probability of 2, where p; +ps = 1.
Then,

P (Object correctly classified as class 1) = P(1|1)p;
P (Object misclassified as class 1) = P(1]2)p2
P (Object correctly classified as class 2) = P(2|2)po
P (Object misclassified as class 2) = P(2|1)p1

Now suppose that the costs of misclassification of a class 2 object as a class 1 object, and vice versa
are, respectively.c (1|2) and ¢(2|1). Then the expected cost of misclassification is therefore

c(211)P2|1)p1 + ¢ (1]2) P(1]2)ps.

The idea is to choose the regions R and Ro so that this expected cost is minimized. This can be
achieved by comparing the predictive probability density functions at each point x

. h@p (R . h@p_cOp)
Rl‘{ 'f2<w>p22c<21>} R2‘{ 'fz<x>pz<c<21>}

If p1 = po, then

and if ¢ (1]2) = ¢ (2|1), equivalently

R1E{x‘ S (@) Z@}
and finally if p; = po and ¢(1]|2) = ¢(2|1) then

mi={e

~—

21} = (2 i (2) > fo(2))



