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ACT I

GENERAL TOPOLOGY





CHAPTER 1

THE CATEGORY OF TOPOLOGICAL SPACES

1.1. Topological spaces

Notation 1.1.1. — Given a set S, we denote by P (S) the power set of S, i.e., the set of all subsets of S. Any map
f : T // S induces a map

f −1 : P (S) //P (T ) ,
where for any subset A⊂ S,

f −1A := {t ∈ T | f (t ) ∈A} ⊂ T .

One may verify that f −1 respects arbitrary intersections and arbitrary unions: for any subsetA ⊂P (S),

f −1







⋂

A∈A

A






=
⋂

A∈A

f −1A and f −1







⋃

A∈A

A






=
⋃

A∈A

f −1A;

moreover, f −1 respects complements: for any set A∈P (S), one may verify that

f −1(ûS A) = ûT ( f
−1A).

Definition 1.1.2. — A topological space (or more simply a space) is a pair (X ,Op(X )) comprised of a set X and a
subset Op(X )⊂P (X ) satisfying the following properties.
(1.1.2.1) For any finite subsetU ⊂Op(X ), the intersection

⋂

U∈U

U ∈ Op(X ).

(1.1.2.2) For any subsetU ′ ⊂Op(X ), the union
⋃

U ′∈U ′
U ′ ∈ Op(X ).

In this case, the set Op(X ) is said to be a topology on X . The elements U ∈ Op(X ) will be called open in X . A subset
V ∈P (X ) will be called closed if its complement ûV :=X −V is an open set.

1.1.3. — In the definition above, note that when U = ∅, condition (1.1.2.1) translates to the condition that X ∈
Op(X ). Similarly, whenU ′ =∅, condition (1.1.2.2) translates to the condition that ∅ ∈ Op(X ).

1.1.4. — We have described a topology on a set X by prescribing the set Op(X ) of open sets; we may also describe
a topology on a set X by prescribing the set Cl(X ) of closed sets.

A topology on a set X is, equivalently, a subset Cl(X )⊂P (X ) satisfying the following axioms.
(1.1.4.1) For any subset V ⊂Cl(X ), the intersection

⋂

V∈V

V ∈Cl(X ).
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(1.1.4.2) For any finite subset V ′ ⊂Cl(X ), the union
⋃

V ′∈V ′
V ′ ∈Cl(X ).

As a result, we sometimes refer to the pair (X ,Cl(X )) as a topological space. In practice, it will always be clear
whether we are describing the set of open subsets of X or the set of closed subsets of X .

Definition 1.1.5. — Suppose X a set, and suppose Op(X ) and Op′(X ) two topologies on X . If Op′(X ) ⊂ Op(X ),
then we say that Op(X ) is finer than Op′(X ) and that Op′(X ) is coarser than Op(X ).

Definition 1.1.6. — Suppose (X ,Op(X )) a topological space. Then there are many different kinds of subsets of X .
(1.1.6.1) For any point x ∈ X , an open neighborhood of x is an open set U ∈ Op(X ) containing x. A neighborhood

of x is a subset V ⊂X containing an open neighborhood of x.
(1.1.6.2) For any subset A⊂X , the closure of A is the set

A := {x ∈X | for any neighborhood V of x, V ∩A 6=∅}.

In other words, the points of A are those points x ∈ X with the property that every neighborhood of x
meets A.

(1.1.6.3) Consider two subsets A⊂ B ⊂X . We say that A is dense in B if A∩B = B .
(1.1.6.4) Dual to the closure is the interior. For any subset A⊂X , the interior of A is the set

A◦ := {x ∈A | there exists a neighborhood V of x such that V ⊂A}.
In other words, the points of A◦ are those points x ∈ A with the property that there is a neighborhood of
x contained in A.

Exercise 1. — Suppose (X ,Op(X )) a topological space. Suppose that A⊂X is a subset. Prove that the closure A⊂X
can be characterized in the following two ways.

(1.1) The closure A is the set

A := {x ∈X | for any open neighborhood V of x, V ∩A 6=∅}.

(1.2) The closure A is the smallest closed subset containing A.
(1.3) The closure A is the intersection of all the closed subsets containing A:

A=
⋂

V∈Cl(X ),A⊂V

V .

Dually, prove that the interior A◦ ⊂X can be characterized in the following two ways.
(1.4) The interior A◦ is the set

A◦ := {x ∈A | there exists an open neighborhood V of x such that V ⊂A}.
(1.5) The interior A◦ is the largest open subset contained in A.
(1.6) The interior A◦ is the union of all the open subsets contained in A:

A◦ =
⋃

U∈Op(X ),U⊂A

U .

Show that the closure and the interior operations are dual operations in the sense that, for any subset A⊂X ,

û((ûA)◦) =A and û(ûA) =A◦.

Exercise? 2. — Suppose X a set. A Kuratowski closure operator on X is a map

κ : P (X ) //P (X )

satisfying the following properties.
(2.1) For any subset U ⊂X , one has U ⊂ κ(U ).
(2.2) For any subset U ⊂X , one has κ(κ(U )) = κ(U ).
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(2.3) For any finite subsetU ⊂P (X ), one has

κ







⋃

U∈U

U






=
⋃

U∈U

κ(U ).

Given a Kuratowski closure operator κ, define subsets

Cl(X κ) := {V ∈P (X ) | κ(V ) =V } ⊂P (X ) and thus Op(X κ) := {U ∈P (X ) | ûU ∈Cl(X κ)} ⊂P (X )
Show that the pair X κ := (X ,Op(X κ)) is a topological space.

Moreover, show that the map

{Kuratowski closure operators on X } //{topologies on X }
κ � // Op(X κ)

is a bijection, where the inverse is the operation A � //A described in 1.1.6. That is, a topology on a set X can be
specified simply by describing a Kuratowski closure operator.

1.2. First examples

Example 1.2.1. — For any set S, there are two topologies that exist automatically on S.
(1.2.1.1) The indiscrete topology S ι is the pair (S,{∅, S}).
(1.2.1.2) The discrete topology Sδ is the pair (S,P (S)).

Example 1.2.2. — The Sierpiński space Σ0 is the set {0,1} equipped with the subset:

Op(Σ0) := {∅,{1},{0,1}} ⊂P ({0,1}) .
One may verify directly that the Sierpiński space is in fact a topological space. The set {0,1} can also be given a
topology given by the subset

Op(Σ1) := {∅,{0},{0,1}} ⊂P ({0,1}) .
This defines a space Σ1, which is — as we will explain — homeomorphic to Σ0. The topologies

{0,1}ι, Σ0, Σ1, and {0,1}δ

specify all the topologies on the set {0,1}.

Exercise 3. — Describe explicitly all the topologies on the set {0,1,2}.

Example 1.2.3. — Any set S can be given the cofinite topology, in which a subset U ⊂ S is declared to be open if
and only if either S =∅, or else the complement ûS U is finite. In this case, the closed subsets of S are the finite sets
and S itself.

Similarly, any set S can be given the cocountable topology, in which a subset U ⊂ S is declared to be open if and
only if either S =∅, or else the complement ûS U is countable. In this case, the closed subsets of S are the countable
sets and S itself.

Example 1.2.4. — Suppose (X ,Op(X )) a topological space, and suppose A⊂X a subset of X . Then A may be given
the subspace topology, defined by

Op(A) := {U ∈P (U ) | there exists U ′ ∈ Op(X ) such that U =U ′ ∩A}.
A subspace of X is thus a subset A⊂X , equipped with the subspace topology.

Example 1.2.5. — Let us consider the vector space Rn . For any point x ∈Rn and any real number ε > 0, the (open)
ball of radius r centered at x is the subset

B(x,ε) := {y ∈Rn | ||y − x||< ε}.
Now the set Rn can be given a topology in the following manner: we will say that a subset U ⊂Rn is open if for any
point x ∈U , there is a real number ε > 0 such that B(x,ε)⊂U . This is known as the standard topology on Rn .
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Example 1.2.6. — We can now combine the previous two examples to get a whole world of interesting topological
spaces.
(1.2.6.1) The open ball of radius 1 at 0 is sometimes called the n-cell.
(1.2.6.2) The closed n-disk is the set

Dn := {x ∈Rn | ||x|| ≤ 1}.

It is equal to the closure B(0,1) of the ball of radius 1 at 0.
(1.2.6.3) The (n− 1)-sphere is the set

Sn−1 := {x ∈Rn | ||x|| ≤ 1}.
It is equal to the complement of the n-cell in this n-disk.

(1.2.6.4) The rational numbers Q⊂R can be given the subspace topology.
(1.2.6.5) The irrational numbers R−Q⊂R can also be given the subspace topology.

Exercise 4. — Show that the subspace topology on Q is not the discrete topology on Q. Show also that Q is dense
in R.

1.2.7. — One of the most difficult aspects of topology is that, despite the fact that the subset Op(X ) ⊂ P (X ) is
the information that is needed in order to specify a topology on a set X , it is frequently difficult to give an explicit
description of the elements of Op(X ).

This leads us to the notion of a subbase for a topology.

Proposition 1.2.8. — Suppose X a set, and suppose S ⊂ P (X ) a collection of subsets of X . Then there exists a unique
coarsest topology OpS (X ) containing S .

Proof. — Define a topology in the following manner: letB be the set of all finite intersections of elements of S
(including the empty intersection, which is all of X ). Then let OpS (X ) be the set of all unions of elements ofB .

This is indeed a topology. Unions of unions of elements ofB are unions of elements ofB . Moreover, for any
finite subsetU ⊂OpS (X ), one may write any element U ∈U as a union of elements ofB :

U =
⋃

i∈IU

Bi ,

where Bi ∈B . Now
⋂

U∈U

U =
⋂

U∈U

⋃

i∈IU

Bi =
⋃

U∈U , iU∈IU

⋂

U∈U

BiU
,

and since each set
⋂

U∈U BiU
is an element ofB by construction, this intersection is a union of elements ofB .(1)

Any topology containing S must contain all unions of finite intersections of elements of S , so any such topol-
ogy must be finer than OpS (X ). Thus OpS (X ) is the unique coarsest topology containing S .

Definition 1.2.9. — In the situation of the previous proposition, the topology OpS (X ) is said to be generated byS ,
and the set S is said to be a subbase for the topological space (X ,OpS (X )).

Exercise 5. — Show that the standard topology on R [1.2.5] is generated by the set

{(a,∞) | a ∈R} ∪ {(−∞, b ) | b ∈R} ⊂P (R).

Example 1.2.10. — More generally, on any totally ordered set X , one may define the order topology, which is gen-
erated by the set

{(a,∞) | a ∈X } ∪ {(−∞, b ) | b ∈X } ⊂P (X ),
where (a,∞) and (−∞, b ) are shorthand:

(a,∞) := {x ∈X | x > a} and (−∞, b ) := {x ∈X | x < b}.

(1)If this formula seems confusing, contemplate the case whenU has cardinality 2.
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Example 1.2.11. — Suppose X and Y two spaces. Then their product

X ×Y := {(x, y) | x ∈X , y ∈ Y }
has a topology, called the product topology generated by the set

{U ×Y | U ∈ Op(X )} ∪ {X ×V | V ∈ Op(Y )}.

Exercise 6. — Show that the standard topology on Rn can be described inductively in the following way.
(6.1) If n = 0, then R0 = ?, and the standard topology is just the discrete topology.
(6.2) If n = 1, then R1 =R, and the standard topology is just the order topology, as you showed above.
(6.3) If n > 1, then Rn = Rn−1×R, and the standard topology on Rn is just the product topology of the standard

topology on Rn−1 with the standard topology on R.

1.3. Continuous maps and homeomorphisms

Definition 1.3.1. — Suppose X and Y topological spaces. Then a map f : X //Y is continuous if the inverse
image of any open set is open, that is, if for any U ∈ Op(Y ), the set f −1U ∈ Op(X ).

Example 1.3.2. — Of course the identity map of any space is a homeomorphism. More generally, suppose X a
space, and suppose A ⊂ X is a subset, equipped with the subspace topology. Then the inclusion map i : A //X
(given by the rule i(a) = a) is continuous.

Exercise 7. — In fact, the subspace topology is rigged precisely to make this happen. Show that if X is a space,
and A⊂ X is a subset, then the subspace topology on A is the coarsest topology on A such that the inclusion map
i : A //X is continuous.

Example 1.3.3. — The composition of two continuous functions is continuous.

Example 1.3.4. — Suppose X is a set with two topologies Op(X ) and Op′(X ). Then Op(X ) is finer than Op′(X ) if
and only if the identity map on X is a continuous map

(X ,Op(X )) //(X ,Op′(X )) .

Example 1.3.5. — Suppose X and Y two spaces, and consider the product X ×Y with the product topology. Then
we have two projection maps

pr1 : X ×Y //X and pr2 : X ×Y //Y ,
given by the rules pr1(x, y) = x and pr2(x, y) = y. Both of these maps are continuous.

Exercise 8. — Once again, the way we defined the product topology guaranteed that this property was as sharp as
possible. If X and Y are spaces, then the product topology is the coarsest topology on X × Y such that the two
projection maps

pr1 : X ×Y //X and pr2 : X ×Y //Y ,
are continuous.

Definition 1.3.6. — A map f : X //Y is open if the image of any open set is open, that is, if for any U ∈ Op(X ),
f U ∈ Op(Y ).

Example 1.3.7. — Open maps need not be continuous. Suppose X a topological space, and suppose S any set. Let
us endow S with the discrete topology Sδ . Then one sees that any map p : X // Sδ is open; however, in order for
p to be continuous, for any s ∈ S the fiber over s — i.e., the inverse image f −1{s} — would have to be an open set.
Hence the floor function b·c : R //Z (which just rounds any real number down to the nearest integer) is open, but
not continuous.

Example 1.3.8. — If X and Y are topological spaces, then the projection maps pr1 and pr2 are both continuous (as
we have seen) and open.

Example 1.3.9. — Consider the function f : R //R given by the rule f (x) = x2. This is continuous, but not
open.
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Exercise 9. — Show that if X is a space, and A⊂ X is a subset with the subspace topology, then the inclusion map
i : A //X is open if and only if A is an open subset of X .

Definition 1.3.10. — A continuous map f : X //Y is a homeomorphism if it is both a bijection and an open map.
Two spaces X and Y are said to be homeomorphic if there is a homeomorphism X //Y .

1.3.11. — A homeomorphism between two topological spaces is a guarantee that those two spaces are indistin-
guishable from the point of view of topology. In group theory or set theory, an isomorphism or bijection between two
objects (groups in the first case, sets in the second) guaranteed that the objects involved were the same, up to some
“relabeling,” so anything you knew about the first group or set was reflected in the second group of set.

As we will see, the same phenomenon happens here. In the case of homeomorphisms, not only do you have the
same points up to some relabeling, but you have the same open sets up to that relabeling!

1.3.12. — Here’s another way to think of homeomorphism. If f : X //Y is a continuous map, then the inverse
image can be viewed as a map

f −1 : Op(Y ) // Op(X ) .
The statement that f is a homeomorphism is the statement that both f and f −1 are bijections.

Alternately, if f : X //Y is a bijection, then it has an inverse f −1 : Y //X . The statement that f is a
homeomorphism is the statement that both f and f −1 are continuous.

(We’re being totally sloppy about notation here, but only because everyone else is too, and you might as well
get used to it now. Mathematicians use the symbol f −1 in two different ways, often in close proximity to one
another. (1) In the first description, we were assuming that f is continuous, and we were talking about the function
Op(Y ) // Op(X ) that takes an open set U to its inverse image f −1U , which is again an open set. (2) In the second
description, we were assuming that f is a bijection, and we were talking about the function Y //X which is the
inverse to f .)

Example 1.3.13. — Of course the identity map is a homeomorphism.

Example 1.3.14. — The two Sierpiński spaces Σ0 and Σ1 are homeomorphic.

Example 1.3.15. — Note that, in order for f : X //Y to be a homeomorphism, we do not only require that f
be a bijective continuous map. That is not enough: let us think of the set

U (1) := {z ∈C | |z |= 1}
with the subspace topology from C∼=R2. Now contemplate the map

ρ : [0,2π) // U (1)

given by the rule ρ(x) = e i x . This wraps the half-open interval around the circle. It is a bijective continuous map,
but it had better not be a homeomorphism!

Example 1.3.16. — Here’s a very important example to contemplate. Consider the tangent function as a map

tan :
�

−π
2 , π2

�

//R .

It’s a homeomorphism! This suggests something that may at first seem surprising: topology doesn’t “see” the differ-
ence between an infinitely long line and an open interval of finite length.

This might seem a little odd, since we’ve been thinking of topological spaces as sets with a concept of “nearness”
of points. But this leads to an important idea about what topology actually is: one might say that topology is what
is left over from geometry when you throw out the notion of distance.

Exercise 10. — Continuing with that idea, find a homeomorphism between R and the ray (0,∞).

Exercise 11. — Suppose n is a nonnegative integer. Show that any two n-dimensional balls B n(x,δ) and B n(y,ε) in
Rn are homeomorphic, and so are their closures.

Exercise? 12. — Suppose n is a nonnegative integer. Show that the following three spaces are all homeomorphic:
(12.1) the n-dimensional ball B n(x,ε) for any x ∈Rn and any ε > 0,
(12.2) the euclidean space Rn , and
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(12.3) the product space
∏m

i=1 B ki (xi ,εi ) for any decomposition n =
∑m

i=1 ki , and points xi ∈ Rki , and any real
numbers εi > 0.

Example 1.3.17. — Here’s a challenging example. Consider the spaces Rm and Rn with the standard topology. It is
a fact that they are homeomorphic if and only if m = n. Certainly one direction here is obvious! But how on earth
could you show that there is no homeomorphism between two spaces? What kind of contradiction could you get
from the existence of a homeomorphism? These kinds of questions will lead us naturally to

Example 1.3.18. — Here’s another example that merits some contemplation. Consider the function f (x) = 1/x.
This can regarded as a map

f : R−{0} //R−{0} .

Since f is its own inverse, f here is a homeomorphism. (In general, a homeomorphism from a space to itself is
called an automorphism.) Of course we have removed the point 0 ∈ R, because in elementary school we were told
that 1/0 is “undefined.” But let’s try to define it anyhow.

We note that, as x approaches 0 from the right, 1/x increases without bound; as x approaches 0 from the left,
1/x decreases without bound. If we wanted to add a point that would play the role of 1/0, then this leads us to the
following idea: consider the set Rt{∞}, where∞ here is just a formal symbol that we’ve tacked on. Let’s topologize
this set in the following way: we will contemplate the set

{(a, b ) | a, b ∈R} ∪ {(−∞, c)∪{∞}∪ (d ,∞) | c , d ∈R} ⊂P (R∪{∞}),

and we will contemplate the topology generated by this set. That is, we will look at all unions of all finite intersec-
tions of open intervals in R along with sets

(−∞, c)∪{∞}∪ (d ,∞)

that “wrap around” our added point∞.
Now we think of our map f : R−{0} //R−{0} , and we note that we can extend it to a map F :

R∪{∞} //R∪{∞} , where we set F (x) := 1/x for any x ∈ R− {0}, we set F (0) :=∞, and we set F (∞) := 0.
With the topology we’ve given R∪{∞}, this is continuous!

The space R∪{∞} we’ve constructed here is called a compactification of R. (We’ll explain more about that later.)
The subspace R⊂R∪{∞} is open, and∞ is contained in the closure of any ray (−∞, c) or (d ,∞).

Exercise 13. — A little bit of thought should convince you that the space R∪ {∞} we’ve described in the previous
example is in fact a circle. Let’s find a homeomorphism that makes this explicit. Translate our circle S1 so that we
are looking at the unit circle around the point (0,1) in R2:

S1(1) := {θ ∈R2 | ||θ− (0,1)||= 1}.

Now let us define a map g : S1(1)−{(0,2)} //R in the following way. For any point θ ∈ S1(1)− {(0,2)}, let
`θ be the unique line passing through (0,2) and θ in R2. Now define g (θ) to be the x-coordinate of the point of
intersection between `θ and the x-axis {(x, y) ∈R2 | y = 0}.
(13.1) Write an explicit formula for g .
(13.2) Show that g is a homeomorphism.
(13.3) Show that g can be extended to a homeomorphism

G : S1(1) //R∪{∞}

by setting G(θ) := g (θ) for any θ ∈ S1(1)−{(0,2)} and G((0,2)) :=∞.
(13.4) In the previous example, we constructed a homeomorphism F : R∪{∞} //R∪{∞} (which is not the

identity). Using the homeomorphism G, we can rewrite this as a homeomorphism

G−1 ◦ F ◦G : S1(1) // S1(1) .

What homeomorphism is this? How might you draw its graph?
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Exercise 14. — The space R∪{∞} is not the only compactification of R; we were led to consider it by our example.
If we thought of another example, we might be led to a different compactification. Think, for example, of the
function h(x) = x3, which we regard as a map

h : R //R .
(14.1) Show that h is a homeomorphism. (Be careful if you decide to study h−1!)
(14.2) Show that h(x) increases without bound as x does, and likewise h(x) decreases without bound as x does.
(14.3) Describe a space R∪{−∞,∞} (where−∞ and∞ are each just formal symbols) with the following properties.

(1) R is an open subspace of R∪{−∞,∞}. (2) The closure of a ray (−∞,a)⊂R in R∪{−∞,∞} is the set

[−∞,a] := {−∞}∪ (−∞,a],

and the closure of a ray (b ,∞)⊂R in R∪{−∞,∞} is the set

[b ,∞] := [b ,∞)∪{∞}.
(14.4) Describe an extension of h to a homeomorphism

H : R∪{−∞,∞} //R∪{−∞,∞} .
(14.5) Show that the space R∪{−∞,∞} is homeomorphic to the interval [−1,1].
(14.6) Show that the map

p : R∪{−∞,∞} //R∪{∞}
(with the topologies defined here and above) is continuous. Show, moreover, that for any topological space
X , and any continuous map f : R∪{−∞,∞} //X such that f (−∞) = f (∞), there exists a unique map
f ′ : R∪{∞} //X such that f = f ′ ◦ p.



CHAPTER 2

CONSTRUCTING TOPOLOGIES AND CONTINUOUS MAPS

2.1. Quotients

Definition 2.1.1. — Suppose X a space, and suppose A⊂X a subspace. Then a quotient of X by A is a pointed space
(X /A,α) and a continuous map q : X //X /A such that q(A) = {α}, and for any space Y and any continuous map
f : X //Y such that f (A) = {a} for some element a ∈ Y , there exists a unique continuous map f ′ : X /A //Y
such that f ′(α) = a and f = f ′ ◦ q .

2.1.2. — Suppose X a space, and suppose A⊂ X a subspace. The definition above is nonconstructive, in the sense
that it does not make it apparent that such a space X /A exists. In fact, it always does. Here’s one way to construct
it.

Let X /A= (X −A)t{α}; consider the map q : X //X /A, given by the formula

q(x) :=

(

x if x ∈X −A;
α otherwise.

We topologize X /A in the following manner. We say that a subset U ⊂X /A is open if and only if the inverse image
q−1U is open in X . This forces q to be continuous. (In fact, this is the finest possible topology on X /A such that q
is continuous.)

I claim that the space X /A and the continuous map q : X //X /A satisfy the conditions of the definition
of a quotient. To see this, suppose Y a topological space, and suppose f : X //Y a continuous map such that
f (A) = {a} for some element a ∈ Y . Let us define f ′ : X /A //Y in the following way

f ′(x) :=

(

x if x ∈X −A;
a otherwise.

One sees that this is the only possible map such that f = f ′◦q . Moreover, f ′ is continuous: for any open set V ⊂ Y ,
f ′−1V is open in X /A if and only if f −1V = q−1 f ′−1V is open in X , but this is automatic since f is continuous.

Exercise 15. — Show that the above description of X /A is unique up to unique homeomorphism. That is, show
that if X is a space, A⊂ X is a subspace, and both q : X //W and q ′ : X //W ′ are each quotients of X by A,
then there is a unique homeomorphism h : W //W ′ such that h ◦ q = q ′.

Exercise? 16. — For any integer n ≥ 0, show that the quotient Dn/Sn−1 is homeomorphic to Sn .

2.1.3. — Contemplate the quotient X /∅. The answer may surprise you!

2.2. Coverings and locality

Exercise 17. — Subbases for topologies permit the easy identification of continuous maps. Suppose X and Y topo-
logical spaces, and suppose S a subbase for the topology on Y . Then show that a map f : X //Y is continuous
if and only if the inverse image of any element U ∈S under f is open in X .
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2.2.1. — The previous result is helpful because it permits one to check only a small number of conditions on subsets
of Y in order to guarantee the continuity of a function.

Definition 2.2.2. — Suppose X and Y two topological spaces, suppose f : X //Y a map, and suppose x ∈ X .
Then one says that f is continuous at x if for any neighborhood V of f (x) ∈ Y , there is a neighborhood U of x ∈X
such that f (U )⊂V .

2.2.3. — Note that I have written “neighborhood” in the above definition. I could easily as well have written “open
neighborhood”: f is continuous at x if and only if for any open neighborhood V of f (x) ∈ Y , there is an open
neighborhood U of x ∈X such that f (U )⊂V .

Lemma 2.2.4. — Suppose X a topological space, and suppose U ⊂ X a subset thereof. Then U is open if and only if, for
any point x ∈U , there exists an open neighborhood W of x with W ⊂U .

Proof. — If U is open, then of course U itself is an open neighborhood of any point x ∈U .
Conversely, one may for the interior U ◦ of U , which is the union of all the open sets W ⊂ U . One sees that

U ◦ = U : indeed, U ◦ ⊂ U , and for any point x ∈ U , there exists an open neighborhood W of x with W ⊂ U ,
whence x ∈U ◦.

Proposition 2.2.5. — Suppose X and Y two topological spaces, and suppose f : X //Y a map. Then f is continuous
if and only if it is continuous for every point x ∈X .

Proof. — Suppose f continuous, and suppose x ∈X a point. Then for any neighborhood V of f (x) ∈ Y , one may
contemplate the interior V ◦, which is open, and its inverse image f −1(V ◦), which is open as well. Now the image
f ( f −1(V ◦))⊂V ◦ ⊂V . Hence f is continuous at every point x ∈X .

Suppose, conversely, that f is continuous at every point x ∈ X . Suppose V ⊂ Y an open set. The claim is that
f −1(V ) is open. For any point x ∈ f −1(V ), there is an open neighborhood W of x ∈ f −1(V ) with f (W ) ⊂V , or
equivalently, with W ⊂ f −1(V ). Now we apply the lemma above to see that f −1(V ) is open.

Definition 2.2.6. — Suppose X a space. A collection V ⊂ P (X ) of subspaces of X is said to cover X — or to be a
covering of X — if X =

⋃

V∈V V . One says that V is an open covering of X if every V ∈ V is an open set; likewise,
one says that V is an closed covering of X if every V ∈ V is an closed set.

For a subspace A ⊂ X , we say that a collection V ⊂ P (X ) of subspaces of X is said to cover A — or to be a
covering of A — if A⊂

⋃

V∈V V , or, equivalently, of A=
⋃

V∈V A∩V .

Exercise 18. — Suppose X a space, and suppose V an open covering of X . Now suppose, for any V ∈ V , that
fV : V //Y is a continuous function, and suppose that, for any elements V ,W ∈ V , one has

fV |V∩W = fW |V∩W : V ∩W //Y .

Then there exists a unique continuous map f : X //Y such that for any V ∈ V ,

f |V = fV : V //Y .

Definition 2.2.7. — Suppose X a topological space, and suppose x ∈X . Then a fundamental system of neighborhoods
of x ∈X is a collection Vx of neighborhoods of x with the following property. For any neighborhood W of x, there
is a neighborhood V ∈ Vx with V ⊂W .

Definition 2.2.8. — Suppose X a topological space. Then a base for X is a collectionB ⊂Op(X ) such that for any
point x ∈X , the set

Bx := {U ∈B | x ∈U }
is a fundamental system of neighborhoods of x ∈X .

2.2.9. — A base for a topological space is also a subbase for the topology Op(X ).

Proposition 2.2.10. — Suppose X is a topological space, and suppose B a base for the topology. The the following are
equivalent for a subset U ⊂X .
(2.2.10.1) The set U is open in X .
(2.2.10.2) For any point x ∈U , there exists an element V ∈Bx such that V ⊂U .
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(2.2.10.3) The set U can be written as the union of elements ofB .

Proof. — Suppose U is open in X ; then for any point x ∈ U , U is an open neighborhood of x. Since Bx is an
open system of neighborhoods of x ∈ X , there is an element V ∈ Bx such that V ⊂ U . This shows that the first
condition implies the second.

Suppose that, for any point x ∈ U , there exists an element V ∈Bx such that V ⊂ U . Then (using the axiom of
choice) one may select, for every point x ∈ U , one element Vx ∈Bx such that Vx ⊂ U . The union U ′ :=

⋃

x∈U Vx
contains every point of U by definition, so that U ′ ⊃U , and since Vx ⊂U for every x ∈U , it follows that U ′ ⊂U .
Thus U is a union of elements ofB . This shows that the second condition implies the third.

Finally, suppose that U can be written as the union of elements ofB . By definition, every element ofB is open,
so by the axioms for a topological space, U is open as well. This completes the proof.

Proposition 2.2.11. — Suppose X a topological space. Then a subsetB ⊂Op(X ) is a base for the topology if and only if
the following conditions are satisfied.
(2.2.11.1) The elements ofB cover X .
(2.2.11.2) For any U ,V ∈B and any element x ∈U ∩V , there is an element W ∈Bx such that W ⊂U ∩V .

Example 2.2.12. — For any totally ordered set X , the set

{(a, b ) | a, b ∈X }
is a base for the order topology on X . (Here, one writes

(a, b ) := {x ∈X | a < x < b}.)

Example 2.2.13. — Suppose n ≥ 0 an integer. Then the set

{B n(x,ε) | x ∈Qn , ε ∈Q}
is a base for the standard topology on euclidean space Rn .

Exercise 19. — Suppose X a set with two topologies Op(X ) and Op′(X ); supposeB a base for (X ,Op(X )) andB ′
a base for (X ,Op′(X )). Show that Op(X ) is finer than Op′(X ) if and only if, for any x ∈X and any element U ∈B ′x ,
there exists an element V ∈Bx such that V ⊂U .

Example 2.2.14. — Here is a standard counterexample in topology; everyone must see it once in their lives. The
Sorgenfrey line R` is the set R with the lower limit topology. This is the topology generated by the half-open intervals
[a, b ) for a, b ∈R. The set

B` := {[a, b ) | a, b ,∈R}
is then a basis for R`. (One may also define the upper limit topology Ru , which is homeomorphic to R` via the map
x � // − x .) One can check fairly easily that these basic open sets [a, b ) are both open and closed.

The previous exercise can be used to show that the Sorgenfrey line is finer than the standard (= order) topology
on R. Indeed, for any open interval (a, b ), one may choose any point a′ ∈ (a, b ), and then [a′, b )⊂ (a, b ).

A map f : R`
//R is continuous if and only if, for any x ∈R,

f (x) = lim
ε→0+

f (x + ε).

In particular, the floor function b·c : R`
//R is continuous.
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COMPACTNESS I

3.1. Compact spaces

Definition 3.1.1. — A topological space X is compact if any open covering has a finite subcovering. A compact
topological space is sometimes called a compactum.

For any space X , write Cp(X ) for the set of all compact subsets of X .

Example 3.1.2. — Any finite space is compact, and the indiscrete topology on any set is compact.

Example 3.1.3. — The euclidean spaces Rn are not compact; indeed, the open balls B n(x,ε) form an open covering,
but there is no finite subcovering. To see this, consider any finite covering of Rn by balls B n(xi ,εi ) for i = 1,2, . . . , m,
and suppose x a point of one of the balls. Then one may choose a real number r so that B n(x, r )⊃

⋃m
i=1 B n(xi ,εi ).

Lemma 3.1.4. — Suppose X and Y spaces, and suppose f : X //Y a continuous function. Then the image f (A) of
any compact subspace A⊂X is compact.

Proof. — SupposeU an open covering of f (A); then the set

{ f −1U | U ∈U }
is an open covering of A, which thus has a finite subcovering V . Now the claim is that the subset

{U ∈U | f −1U ∈ V },
which is finite, is a covering of f (A). Indeed, suppose y = f (a) ∈ f (A) a point with a ∈ A. Then there exists some
U ∈U such that f −1U ∈ V and a ∈ f −1U , whence f (a) ∈U .

Lemma 3.1.5. — A closed subspace of a compact space is compact.

Proof. — Suppose X a compactum, and suppose A ⊂ X closed. Suppose U an open covering of A. Since each
element U ∈U is open in A, one may choose a collectionU ′ ⊂Op(X ) such that

U = {U ∈ Op(A) | U =U ′ ∩A for someU ′ ∈U ′}.
Now the setU ′ ∪{X −A} is an open covering of A; hence there is a finite subcovering V ′ ⊂U ′. Now

V = {U ∈ Op(A) | U =U ′ ∩A for someU ′ ∈ V ′}
is a finite subcovering ofU .

Exercise 20. — Suppose we are given a finite collection {Xi} of compact spaces, i = 1,2, . . . , n. Show that the
product space

∏n
i=1 Xi is compact. (This is the easy case of Tychonoff’s Theorem, to which we shall return.)

Theorem 3.1.6. — The following are equivalent for a subspace A⊂Rn .
(3.1.6.1) A is compact.
(3.1.6.2) [Bolzano–Weierstraß] Every sequence of points in A has a convergent subsequence.
(3.1.6.3) [Heine–Borel] A is closed and bounded.
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Proof. — Let us show that the first of these conditions implies the second. Suppose A compact, and suppose (xi )i≥0
a sequence of points in A. If there were no convergent subsequence of (xi )i≥0, then the set {xi}i≥0 would be a closed
subset of A, hence compact, and there would be a sequence εi of positive real numbers such that the balls B n(xi ,εi )
would be disjoint. But then {B n(xi ,εi )}i≥0 would be an open cover of {xi}i≥0 with no finite subcover.

Let us show that the second property implies the third. Suppose A has the property that every sequence has a
convergent subsequence. Then A must be bounded, since otherwise there exists a sequence (xi )i≥0 of points in A
such that ||xi || → ∞. It must also be closed, since if x ∈ A−A is a point “at the boundary,” one can construct a
sequence of points of A converging to x.

Finally, let us show that the third condition implies the first. Suppose A is closed and bounded. Since A is
bounded, it is contained in a box [−a,a]n for some a > 0. Since every closed subspace of a compact space is
compact, it is enough to show that [−a,a]n is compact. By the previous exercise, it is enough to show that [−a,a]
is compact. SupposeU an open covering of [−a,a]; then let

c = sup{x ∈R | [−a, x] can be covered by finitely many elements ofU}.
Suppose, to generate a contradiction, that c < a; then let U ∈ U be an element of the open covering containing
c . Then for some ε > 0, one has B(c ,ε) ⊂ U . By the definition of c , one may cover [−a,a − c/2] with finitely
many elements of U ; adding in U to that set yields a finite open covering of [−a,a + c/2], yielding the desired
contradiction.

Exercise 21. — Suppose X a compact space, and suppose f : X //R a continuous function. Then f attains both
a maximum and a minimum value.

3.2. The Tychonoff Product Theorem

Definition 3.2.1. — A collectionF of sets is said to be of finite character if the following condition holds: a set A is
an element ofF if and only if every finite subset of A is an element ofF .

Lemma 3.2.2 (Tukey). — SupposeF a nonempty collection of sets. Then ifF is of finite character, then every element
A∈F is contained in a maximal set M ∈F , i.e., a set M such that no element ofF properly contains M .

Proof. — Give F a partial ordering by inclusion. The union of every chain of elements of F must also belong to
F , so by Zorn’s Lemma, every element A∈F is contained in a maximal element.

Theorem 3.2.3 (Alexander Subbase). — Suppose X a topological space, and suppose S a subbase for Op(X ) that is
also an open cover of Op(X ). If every subcover of S has a finite subcover, then X is compact.

Proof. — The language here can get a tad confusing, so let’s introduce some new terminology to make things a little
simpler. Let’s call a familyU ⊂P (X ) exiguous if it does not cover X , and let’s callU bourgeois if any finite subset
ofU is exiguous.

Using our new terminology, we see that X is compact if and only if any bourgeois family of open sets is exiguous.
We can also rewrite our assumption on the subbase S : we are assuming that any bourgeois subfamily of S is
exiguous.

Our aim is to show that any bourgeois familyA of open sets is exiguous. Write

F := {U ∈P (Op(X )) | U is bourgeois}.
This family is obviously of finite character. So suppose A a bourgeois family of open sets, and let F (A ) be the
collection of all bourgeois families of open sets of X that containA :

F (A ) := {U ∈F | A ⊂F}.
Tukey’s Lemma says that it contains a maximal elementM ∈F (A ). It is enough to show thatM is exiguous, and
this is now our goal.

Exercise 22. — Prove the following Key Fact about our maximal elementM :
If {Ui}ni=1 is a finite collection of open sets of X such that the intersection

⋂n
i=1 Ui is contained in

an element ofM , then one of the Ui is itself an element ofM .
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(Hint: if U is an open set of X that is not contained inM , show that there is a finite collection {V j }m
j=1 of elements

ofM such that {U } ∪ {V j }m
j=1 is a covering of X .)

All right, now it’s time to consider our subbase S ; again, we are assuming that any bourgeois subcollection of
S is exiguous. Let’s contemplate the intersection M ∩S ; it is bourgeois, and thus (by our assumption on S )
exiguous.

Now I claim that
⋃

U∈M

U ⊂
⋃

U∈M∩S

U .

Suppose x ∈ U ∈ M ; then since S is a subbase, there is a finite intersection W :=
⋂n

i=1 Ui of elements Ui ∈ S
such that x ∈W and W ⊂ U . By the Key Fact above, one of the Ui is itself and element ofM . This means that
x ∈Ui ∈M ∩S , just as we had hoped.

But remember the intersectionM ∩S is exiguous, so we conclude thatM is also!

Exercise? 23. — Suppose X a totally ordered set. Let us say that X is order-complete if every subset of X has a
supremum in X . Show that X is compact (with the order topology) if and only if it is order-complete.

Theorem 3.2.4 (Tychonoff Product). — The product of compact spaces is compact.

Proof. — Suppose {Xα | α ∈A} a collection of compact spaces, and give
∏

α∈A Xα the product topology. This is the
topology generated by the subbase

S := {pr−1
α
(U ) | α ∈A, U ∈ Op(Xα)}.

Let’s use the Alexander Subbase Theorem. We need to show that any bourgeois subcollectionU of S is exigu-
ous. SupposeU a bourgeois subcollection of S . For every α ∈A, set

Uα := {U ∈ Op(Xα) | pr−1
α
(U ) ∈U }.

It is obvious thatUα is bourgeois and hence exiguous (since Xα is compact). Hence for each α ∈A, we can choose a
point xα ∈Xα such that xα /∈

⋃

U∈Uα
U . But now the point

x := (xα)α∈A

is not a member of any element ofU . SoU is exiguous.

3.3. The compact-open topology

Definition 3.3.1. — Suppose X and Y two topological spaces. Denote by C (X ,Y ) the set of all continuous maps
X //Y . For any subsets A⊂X and B ⊂ Y , write

V (A,B) := { f ∈C (X ,Y ) | f (A)⊂ B}.
Now we topologize the set C (X ,Y ) in the following manner. Take the topology generated by the subbase

{V (K , U ) | K ∈Cp(X ), and U ∈ Op(Y )}.
This is called the compact-open topology.

Exercise 24. — Suppose X any compact space, and suppose (Y, d ) a metric space. A sequence of continuous func-
tions fn ∈C (X ,Y ) is said to converge uniformly to a continuous function f ∈C (X ,Y ) if

lim
n→∞

sup
x∈X

d ( fn(x), f (x)) = 0;

in other words, for every ε > 0, there exists a natural number N such that for any x ∈X and any n ≥N ,

d ( fn(x), f (x))< ε.

Prove that a sequence fn of continuous functions X //Y converges uniformly if and only if it converges in
C (X ,Y ) with the compact-open topology. Is the same true if X is not compact?

Exercise 25. — Suppose X = Sδ a discrete space. Show that the compact-open topology onC (X ,Y ) coincides with
the product topology on

∏

s∈S Y .





CHAPTER 4

COMPACTNESS II

4.1. Forms of compactness

We have already seen that for subspaces of a euclidean space, compactness is equivalent to the Heine–Borel prop-
erty (closed and bounded) of the Bolzano–Weierstraß property (the property every sequence has a convergent subse-
quence). This doesn’t quite cut it for more general spaces. In this section, we’ll discuss analogues and generalizations
of these notions, and we’ll also talk about the notion of a net or Moore–Smith sequence.

Definition 4.1.1. — Suppose X a topological space.
(4.1.1.1) One says that X is limit point compact if and only if every infinite subset A of X has a limit point (i.e., a

point x ∈X that is contained in A−{x}).
(4.1.1.2) One says that X is countably compact if and only if every countable open cover has a finite subcover.
(4.1.1.3) One says that X is sequentially compact if and only if every sequence x : N //X has a convergent subse-

quence.

4.1.2. — These three notions seem remarkably similar, and in Rn (and more generally, in any metrizable space) they
are indistinct and, moreover, equivalent to compactness. However, they are different conditions in general, and they
are very different from compactness. To see this, will contemplate some examples, including a key counterexample.
First, let’s see what implications we do have.

Exercise 26. — Show that a space X is countably compact if and only if every nested sequence X ⊃ V1 ⊃ V2 ⊃
V3 ⊃ · · · of closed, nonempty subspaces of X has a nonempty intersection.

Proposition 4.1.3. — Consider the following properties for a topological space X .
(4.1.3.1) X is compact.
(4.1.3.2) X is sequentially compact.
(4.1.3.3) X is countably compact.
(4.1.3.4) X is limit point compact.
Then we have a diagram of implications

(1)
 (IIII (2)
v~ uuuu

(3)

��
(4)

Proof. — It is obvious that a compact spaces is countably compact.
Let us now see that a sequentially compact space is countably compact. SupposeU = {Ui}i≥0 a countable open

cover of X . Proceeding inductively, write V0 := U0, and let Vp be the first of the sequence of Ui ’s not covered by
the V0 ∪V1 ∪ · · · ∪Vp−1. If this choice is impossible at any (finite) stage, then we have our required finite subcover;
if this choice is always possible, then for every n ∈ N we may select an element xn ∈ Vn such that for any i < n,
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xn /∈ Vi . Now sequential compactness guarantees that the sequence (xn)n≥0 has a convergent subsequence (xni
)i≥0;

let y be the limit of this subsequence. Then y ∈Vn for some integer n, so for every i � 0 (in particular for i so that
ni > n), we have xni

∈Vm , a contradiction.
Let us now see that a countably compact space is limit point compact. Suppose X a countably compact space,

and suppose B ⊂X a subset with no limit point. Let us show that every countable subset A⊂ B is finite, whence B
is itself finite. Of course any countable subset A⊂ B has no limit point; so A is closed, and for every point a ∈A, we
can choose an open neighborhood Ua such that Ua ∩A= {a}. Now write

X = (X −A)∪
⋃

a∈A

Ua ;

this is an open cover of X , which must admit a finite subcover. But it admits no proper subcover at all, so A must
be finite.

Example 4.1.4. — To construct this example, we have to appeal to some basic facts about ordinals.
First, let’s recall that a strict well-ordering on a set A is a well-ordering < that is irreflexive, in the sense that for

any element a ∈A, it is not the case that a < a. Now we come to von Neumann’s definition of ordinal: a set A is an
ordinal if

(4.1.4.1) every element of A is also a subset of A, and
(4.1.4.2) A is strictly well-ordered with respect to set membership.

Put differently, an ordinal is a set A such that the following conditions hold.

(4.1.4.1’) If β ∈A, then β(A.
(4.1.4.2’) If β,γ ∈A, then one of the following is true: (1) β= γ , (2) β ∈ γ , or (3) γ ∈β.
(4.1.4.3’) If ∅ 6=β(A, then there exists an element β ∈A such that γ ∩β=∅.

With this definition, we define 0 := ∅, the minimal ordinal. Now recursively, we define, for every integer n > 0
the ordinal

n := {0,1, . . . ,n− 1}.
These are the finite ordinals.

Every ordinal α has a successor, namely
α+ 1 := α∪{α}.

Some ordinals are not successors; these are called limit ordinals. The minimal ordinal 0 is a limit ordinal.
The first infinite ordinal is also the first nonzero limit ordinal; it is

ω := {0,1, . . .}.

It has a successorω+ 1, and its successor has a successorω+ 2, etc.
If α and β are ordinals, then we say that α <β if α ∈β. Suppose A any set of ordinals; then A is well-ordered by

this relation. Consequently, a set A of ordinals is itself an ordinal if and only if, for every element α ∈A, any ordinal
β< α is also an element of A. Using this, there is a supremum of any set A of ordinals: it is simply the union of the
elements of A.

We won’t prove it here, but in fact every well-ordered set is order-isomorphic to a unique ordinal in a unique fash-
ion. As a result, if we build a well-ordered set A, there is an ordinal ord(A) and an order-isomorphism A // ord(A) .
In particular, every ordinal α is equal to the set [0,α) of all ordinals less than α.

We can define operations of ordinal arithmetic in the following manner. Given two ordinals α and β, we can
concatenate them by well ordering the disjoint union αtβ so that the order within α andβ is preserved, and every
element of α is strictly less than every element of β. Now set

α+β := ord(αtβ).

Similarly, one can give the product α×β the lexicographic ordering, so that (a, b )< (a′, b ′) if either a < a′ or else
a = a′ and b < b ′. This is well-ordered, and so one may set

α ·β := ord(α×β).
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We can generalize the lexicographic order to a well ordering on the set Map(α,β) of all maps f : α //β such that
only finitely many elements of α are mapped to an element larger than 0 ∈β; one sets

βα := ord(Map(α,β)).

Note that none of these operations is commutative, though both addition and multiplication are commutative.
If we apply these operations to the finite ordinals and toω, we get a sequence of ordinals:

0,1,2, . . . ,ω,ω+ 1,ω+ 2, . . . ,ω · 2,ω · 2+ 1,ω · 2+ 2, . . . ,ω2, . . . ,ω3, . . . ,ωω, . . . ,ωωω
, . . . ,ωωωω

, . . . ,ε0, . . . .

The last one listed there was studied by Cantor: it is the smallest ordinal satisfying the equation

ε0 =ω
ε0 ;

it can be expressed as the supremum of the sequence

ε0 = sup{ω,ωω,ωωω
,ωωωω

, . . .}.
The surprising fact is that these ordinals are all countable, because every supremum of a countable set of countable
ordinals is countable. So the infinite ordinals all have the same cardinality, but they are non-isomorphic as well-
ordered sets.

We can give any of these sets the order topology, but it might not be an interesting enterprise:

Exercise 27. — Show that for any ordinal α, the order topology and the discrete topology coincide if and only if α
contains no limit ordinal apart from 0.

Now the supremum of all countable cardinals is an uncountable cardinal ω1. This is the first uncountable cardi-
nal, and it is going to give us a useful counterexample now and in the future.

Every increasing sequence in ω1 converges to an element of ω1. Hence the space ω1 (when equipped with the
order topology) is sequentially compact, but it cannot be compact, since it contains no maximal element. The set
ω1+ 1 is, however, compact.

Exercise 28. — Consider the discrete space {0,1}δ . Show that the product

X :=
∏

x∈[0,1]

{0,1}δ

is compact, but not sequentially compact.

Exercise? 29. — Find a space that is limit point compact, but not countably compact. (Hint: such a space must have
the property that it contains a finite subspace that is not closed.)

4.2. Locally compact Hausdorff spaces

The next variant of compactness we want to consider, local compactness, is most interesting when coupled with a
particular separation axiom, called Hausdorffness. We will discuss a variety of separation axioms later, but for now,
let us concentrate on this one, since it appears so often.

Definition 4.2.1. — A space X is said to be Hausdorff if for any two distinct points x, y ∈ X , there are neighbor-
hoods U of x and V of y such that U ∩V =∅.

Proposition 4.2.2. — A space X is Hausdorff if and only if, for any point x ∈ X , the intersection Ix of all closed
neighborhoods of x is the singleton {x}.

Proof. — Suppose X Hausdorff, and suppose x ∈ X . Surely x ∈ Ix , and I claim that any point y ∈ X − {x} is not
in I . Indeed, for any such point, one may find disjoint open neighborhoods U of x and V of y, whence X −V is a
closed neighborhood of x not containing y. Thus I = {x}.

Conversely, suppose that, for any point x ∈ X , one has Ix = {x}. Suppose x and y two distinct points of X .
Then since Ix = {x}, there exists a closed neighborhood W of x not containing y, and now the interior W ◦ and the
complement X −W are disjoint open neighborhoods of x and y, respectively.
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Exercise 30. — Show that a space X is Hausdorff if and only if the diagonal

∆X := {(x, x) ∈X ×X }

is a closed subspace of X ×X .

Example 4.2.3. — Any metric space (in particular any euclidean space Rn) is Hausdorff. The cofinite topology on
any infinite set is not.

Proposition 4.2.4. — Any subspace of a Hausdorff space is Hausdorff, and any product of any collection of Hausdorff
spaces is Hausdorff.

Proposition 4.2.5. — If X and Y are spaces, and Y is Hausdorff, then for any continuous maps f , g : X //Y , the
equalizer

E( f ,g ) := {(x, x ′) ∈X ×X | f (x) = g (x ′)}

is closed in X ×X , and

Proof. — The set E( f ,g ) is the inverse image of∆Y under the map ( f , g ) : X ×X //Y ×Y .

Corollary 4.2.6. — If S and T are spaces, and T is Hausdorff, then for any continuous map h : S //T , the graph

Γh := {(s , t ) ∈ S ×T | h(s) = t}

is closed in S ×T .

Proof. — Apply the proposition to the case when X = S × T , Y = T , f (s , t ) = t , and g (s , t ) = h(s) to obtain a
closed subspace of S ×T × S ×T , and intersect this with the diagonal∆S×T .

Proposition 4.2.7. — If X is a Hausdorff space, then any compact subspace K ⊂X is closed.

Proof. — Suppose K ⊂ X a compact subspace. Write U = X −K . Suppose x ∈ U . For any element y ∈ K , choose
disjoint open neighborhoods Vy of x and Wy of y. The collection {Wy | y ∈ K} is an open cover of K , so there
is a finite collection of points y1, y2, . . . , yn such that the subcollection {Wyi

| i ∈ {1,2, . . . , n}} covers n. Now the
intersection

⋂n
i=1 Vyi

is an open neighborhood of x that is disjoint from K , i.e., completely contained in U .

Exercise 31. — Suppose X a Hausdorff space, and suppose K , L ⊂ X two disjoint compact subspaces. Show that
there exist open sets U ,V ⊂X such that K ⊂U , L⊂V , and U ∩V =∅.

Definition 4.2.8. — A space is said to be locally compact if and only if any point has a compact neighborhood.

Example 4.2.9. — Any compact space is of course locally compact. The euclidean spaces Rn are locally compact,
and any discrete space is locally compact.

More exotically, suppose X any set, and suppose x ∈ X . Then the particular point topology for (X , x) is the
topology in which

Op(X ) := {U ∈P (X ) | x ∈U } ∪ {∅}.
The particular point topology is always locally compact.

Example 4.2.10. — The space Q with the subspace topology is not locally compact, since its compact subspaces
have empty interior.

Exercise 32. — Suppose X a locally compact Hausdorff space X , and suppose K ⊂ X a compact subspace. Show
that for any point x ∈ X − K , there exists a neighborhood U of x and an open set V containing K such that
U ∩V =∅, and the closure V is compact.

Lemma 4.2.11. — Suppose X a locally compact Hausdorff space X , and suppose U an open subset that contains a
compact subspace K. Then there exists an open set W whose closure is compact such that K ⊂W ⊂W ⊂U .
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Proof. — If U = X , then exercise 32 applies directly. If not, then for every point x ∈ X −U , the exercise 32 gives
an open neighborhood Vx of x and an open set Wx whose closure is compact such that

K ⊂Vx and Vx ∩Wx =∅.

Now the family {(X −U )∩Wx | x ∈ X −U } is a family of compact subspaces of X whose intersection is empty.
Consequently there are a finite number of elements x1, x2, . . . , xn ∈ X − U such that the intersection (X − U ) ∩
⋂n

i=1 Wx is empty. Now W :=
⋂n

i=1 Wx does the job.

Proposition 4.2.12. — Suppose X a Hausdorff space. Then the following are equivalent.
(4.2.12.1) Every point x ∈X has a fundamental system of compact neighborhoods.
(4.2.12.2) Every point x ∈X has a closed compact neighborhood.
(4.2.12.3) X is locally compact.

Proof. — The first two conditions imply the third by definition. The third also implies the second, since compact
subspaces of a Hausdorff space are closed. Thus it remains only to show that the third condition implies the first.
So suppose X is locally compact, and suppose V an open neighborhood of x; I can apply the previous lemma to get
an open neighborhood W of x such that W is compact and contained in V .

4.2.13. — We often think of locally compact and Hausdorff as a single condition, which we abbreviate as LCH.

Lemma 4.2.14. — A closed subspace of an LCH space is itself LCH.

Proof. — The intersection of a closed set and a compact set is compact. (Why does our result follow from this?)

Exercise 33. — More generally, a subspace of an LCH space X is itself LCH if and only if it can be written as the
complement of a closed subspace inside another closed subspace.

4.2.15. — We now turn to the Alexandroff or one-point compactification of a space X .

Definition 4.2.16. — Suppose X a space. Then define X ? to be the set X t {∞}, with the following topology: a set
U ⊂ X ? will be said to be open if and only if either U is an open subset of X , or else U contains∞, and X −U is
closed and compact.

Exercise 34. — Show that this indeed defines a topology on X ?, and the resulting space is compact.

Theorem 4.2.17. — Suppose X a space. We have the following facts about the Alexandroff compactification.
(4.2.17.1) The inclusion map i : X //X ? is continuous and open.
(4.2.17.2) The image of i is a dense open set in X unless X is already compact.
(4.2.17.3) The Alexandroff compactification X ? is Hausdorff if and only if X is LCH.

Exercise 35. — Prove the previous theorem.

Exercise 36. — Suppose Y an LCH space, and suppose Z ⊂ Y a closed subspace. Compare the Alexandroff com-
pactification (Y −Z)? and the quotient space Y /Z . Are they homeomorphic? Prove it or give a counterexample. If
it’s true, is the LCH condition necessary? If it’s false, can you add conditions on Z and Y so that it will be true?

Exercise 37. — Describe the Alexandroff compactifications of the following spaces in terms of more familiar spaces.
(37.1) Rn .
(37.2) A discrete space.
(37.3) The subspace {(n, x) | n ∈ Zx ∈R} ⊂R2.
(37.4) Q with the subspace topology.





CHAPTER 5

COUNTABILITY AND SEPARATION

5.1. Taxonomy of separation

Definition 5.1.1. — Suppose X a space. Then two points x, y ∈ X are topologically distinguishable if they do not
have the same collection of open neighborhoods. Otherwise, the points are said to be topologically indistinguishable.

Exercise 38. — Observe that for any space X , if x, y ∈X topologically distinguishable points, then x 6= y. Give an
example to show that the converse need not hold.

Definition 5.1.2. — Suppose X a space. Then a neighborhood of a subset A⊂ X is a set containing whose interior
contains A.

Definition 5.1.3. — Suppose X a space, and suppose A,B ⊂X two subspaces of X .

(5.1.3.1) The sets A and B are said to be separated if both A∩B and A∩B are empty.
(5.1.3.2) The sets A and B are said to be separated by neighborhoods if there exists disjoint neighborhoods U and V

and A and B , respectively.
(5.1.3.3) The sets A and B are said to be separated by closed neighborhoods there exists disjoint closed neighborhoods

U and V and A and B , respectively.
(5.1.3.4) The sets A and B are said to be separated by a function if there exists a continuous map f : X //[0,1]

such that f |A= 0 and f |B = 1.
(5.1.3.5) The sets A and B are said to be precisely separated by a function if there exists a continuous map f :

X //[0,1] such that A= f −1{0} and B = f −1{1}.

5.1.4. — Suppose X a space, and suppose A,B ⊂ X . It is easy to see that each of these conditions follows from the
next.
(5.1.4.1) A and B are separated.
(5.1.4.2) A and B are separated by neighborhoods.
(5.1.4.3) A and B are separated by closed neighborhoods.
(5.1.4.4) A and B are separated by a function.
(5.1.4.5) A and B are precisely separated by a function.

Definition 5.1.5. — Suppose X a space. Then we introduce the Trennungsaxiome.
T0 One says that X is Kolmogoroff or T0 if any two distinct points are topologically distinguishable.
T1 One says that X is T1 if any two distinct points are separated.
T2 One says that X is Hausdorff or T2 if any two distinct points are separated by neighborhoods.

T2 1
2

One says that X is Urysohn or T2 1
2

if any two points are separated by closed neighborhoods.
T3 One says that X is regular Hausdorff or T3 if it is T0 and if any closed subset Z ⊂ X and any point x /∈ Z are

separated by neighborhoods.
T3 1

2
One says that X is Tychonoff or T3 1

2
if it is T0 and if any closed subset Z ⊂X and any point x /∈ Z are separated

by a function.
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T4 One says that X is normal Hausdorff or T4 if it is T1 and if any two closed subsets can be separated by
neighborhoods.

T5 One says that X is completely normal Hausdorff or T5 if it is T1 and if any two separated sets are separated by
neighborhoods.

T6 One says that X is perfectly normal Hausdorff or T6 if it is T1 and if any two closed sets are precisely separated
by a function.

5.1.6. — For any space X , topological indistinguishability is an equivalence relation on the points of X . The quo-
tient space under this equivalence relation is the Kolmogoroff quotient KX of X . This space is automatically Kol-
mogoroff. This is frequently done in analysis.

Lemma 5.1.7. — The following are equivalent for a space X .
(5.1.7.1) X is T1.
(5.1.7.2) X is T0, and any two topologially distinguishable points are separated.
(5.1.7.3) Points of X are closed.
(5.1.7.4) Every finite set in X is closed.

Theorem 5.1.8. — For any i , j ∈ {0,1,2,2 1
2 , 3, 3 1

2 , 4, 5,6}, if i ≤ j , then any T j space is also Ti .

Example 5.1.9. — Let us convince ourselves that these conditions are distinct.

(5.1.9.1) You have already given an example of a space that is not T0.
(5.1.9.2) The Sierpiński space Σ0 is T0 but not T1.
(5.1.9.3) The cofinite topology on an infinite set is T1 but not T2.
(5.1.9.4) Let X = {(x, y) ∈Q2 | y ≥ 0}, and fix an irrational number θ. Topologize this set in the following manner:

for any point (x, y) ∈X , and any ε > 0, let

Nε(x, y) = {(x, y)} ∪
���

x +
y

θ
− ε, x +

y

θ
+ ε
�

∪
�

x −
y

θ
− ε, x −

y

θ
+ ε
��

∩Q
�

,

and contemplate the topology generated by these sets; the sets Nε(x, y) form a base for this topology. The
closure of each basic neighborhood Nε(x, y) contains the union of four strips of slope ±θ extending from
the intervals (x + y

θ
− ε, x + y

θ
+ ε) and (x − y

θ
− ε, x − y

θ
+ ε). Hence the closures of every two open sets

intersect. This is a T2 space that is not T2 1
2
.

(5.1.9.5) Let H be the upper half-plane {(x, y) ∈ R2 | y ≥ 0}. Topologize this set in the following manner. Begin
with all the open sets in the set P = {(x, y) ∈R2 | y > 0}, and add in sets of the form {p}∪ (U ∩ P ), where
p = (x, 0), and U is an open neighborhood of p in the topology on R2. This is a topology on H ; and it is
not difficult to see that it is T2 1

2
. However, the complement of a neighborhood of p = (0,0) intersects the

closure of every neighborhood of p. So H is not T3.
(5.1.9.6) The Tychonoff corkscrew is the standard example of a space that is T3 but not T3 1

2
, but it’s an absurd space

that just makes you sorry you ever tried to contemplate it. Here’s one that’s slightly simpler (though
still pretty absurd), due to A. B. Raha. Let’s call it the Raha space. For every even integer n, set Tn :=
{n}× (−1,1), and let X1 =

⋃

n even Tn . Now let (tk )k≥1 be an increasing sequence of positive real numbers
converging to 1. For every odd integer n, set Tn :=

⋃

k≥1{(x, y) ∈ R2 | (x − n)2 + y2 = t 2
k
}, and let

X2 =
⋃

n odd Tn . Now let X = {a, b} ∪
⋃

n∈Z Tn . Topologize X so that: (1) every point of X2 except the
points (n, tk ) are isolated; (2) a neighborhood of (n, tk ) consists of all but finitely many elements of {(x, y) ∈
R2 | (x − n)2 + y2 = t 2

k
}; (3) a neighborhood of a point (n, y) ∈ X1 consists of all but a finite number of

points of {(z, y) | n− 1< z < n+ 1}∩ (Tn−1 ∪Tn); (4) a neighborhood of a is a set Uc containing a and all
points of X1∪X2 with x-coordinate greater than a number c ; (5) a neighborhood of b is a set Vd containing
b and all points of X1 ∪X2 with x-coordinate less than a number d . This is a space that is T3, but every
continuous map f : X //R has the property that f (a) = f (b ), so it is not T3 1

2
.

(5.1.9.7) Consider the space Map(R,R) of all maps R //R with the topology of pointwise convergence. This
space is T3 1

2
but not T4.
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(5.1.9.8) The Tychonoff plank is the space P := (ω+ 1)× (ω1+ 1). It is compact and Hausdorff, and hence it is T4.
It is not, however T5, because the space P −{(ω,ω1)} is not normal. (So you walk the plank . . . Get it? It’s
clever.)

(5.1.9.9) Suppose X an uncountable set, and suppose x ∈ X . Then we have the variant on the particular point
topology, which is called the Fort space topology. The closed sets are declared to be those sets V such that
either V is finite or x ∈V . Then it is simple to verify that X is T5, and a short argument shows it cannot
be T6.

The moral of the story is not, of course, to memorize exotic counterexamples. The point is to realize that there
are examples that prevent the reversal of any of the implications T j ⇒ Ti for i ≤ j . Also, in each case the example
listed is the simplest one I could find. This suggests something interesting: the differences between T2 1

2
and T2 and

T3 is pretty small, as is the difference between T3 1
2

and T3. However, the difference between T4 and T3 1
2

is pretty
significant, contrary to what might have been your expectation. This shows us two relatively bright lines separating
the “easy” separation axioms T0−T1 from the “midrange” separation axioms T2−T3 1

2
, and separating the “midrange”

axioms from the “hard” separation axioms T4−T6.

5.1.10. — There is another condition, called sobriety, that is better suited to applications in algebraic geometry.

Definition 5.1.11. — A space X is said to be irreducible (or hyperconnected) if no two nonempty open subsets of X
are disjoint.

Exercise 39. — Show that the following are equivalent for a space X .
(39.1) X is irreducible.
(39.2) Every nonempty open set of X is dense.
(39.3) X cannot be written as the union of two proper nonempty closed subsets.
(39.4) The interior of every proper closed subset is empty.

Definition 5.1.12. — A point of a space X is said to be generic if it is dense in X .

Definition 5.1.13. — A space X is said to be sober if every irreducible closed subspace Z ⊂ X has a unique generic
point.

5.1.14. — Every Hausdorff space is sober, and every sober space is Kolmogoroff, but there is no comparison be-
tween sobriety and T1.

Exercise? 40. — Suppose X and Y sober spaces, and consider the posets (Op(X ),⊂) and (Op(Y ),⊂). Show that if
(Op(X ),⊂) and (Op(Y ),⊂) are isomorphic as posets, then X and Y are homeomorphic.

5.2. Normality, Urysohn’s lemma, and the Tietze extension theorem

Definition 5.2.1. — A space X is said to be normal if disjoint closed sets have disjoint neighborhoods.

5.2.2. — A normal T1 space is normal Hausdorff, or T4. The results of this section do not require the T1 property,
so we do not include it in our definition.

Lemma 5.2.3. — Suppose D ⊂ R>0 a dense subset, and suppose that for each element t ∈ D, there is a subset Ft of a set
X such that
(5.2.3.1) if t < s , then Ft ⊂ Fs , and
(5.2.3.2) the sets Ft cover X .
Then for any x ∈X , let f (x) = inf{t | x ∈ Ft }. Then for any element s ∈R, one has

{x ∈X | f (x)< s}=
⋃

{Ft | t ∈D and t < s}

and
{x ∈X | f (x)≤ s}=

⋂

{Ft | t ∈D and t > s}.

Proof. — An exercise in set theory (not to be handed in).
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Lemma 5.2.4. — Suppose now X a space, and suppose D ⊂ R>0 a dense subset. If for each element t ∈ D, there is an
open subset Ft ⊂X such that

(5.2.3.1) if t < s , then F t ⊂ Fs , and
(5.2.3.2) the sets Ft cover X ,
then the function f defined by f (x) = inf{t | x ∈ Ft } is continuous.

Proof. — It’s enough to check that the inverse image of the sets (−∞, s) and (−∞, s] are open and closed (respec-
tively) for every s ∈R.

The previous lemma shows that the inverse images of sets of the first kind, (−∞, s), are the union of open sets,
hence open.

It now follows from the previous lemma that the inverse images of sets of the second kind, (−∞, s], are closed
(and hence we are done) if the following equality obtains:

⋂

{Ft | t ∈D and t > s}=
⋂

{F t | t ∈D and t > s}.

It is clear that the first set is contained in the second. On the other hand, for any t ∈ D with t > s , there is an
element r ∈D with s < r < t , whence F r ⊂ Ft . This completes the proof.

Lemma 5.2.5 (Urysohn). — Suppose X a normal space, and suppose A and B two disjoint closed subsets of X . Then A
and B are separated by functions, i.e., there is a continuous map f : X //[0,1] such that f |A= 0 and f |B = 1.

Proof. — We wish to apply the previous lemma with the set

D = {x ∈Q | x = p2−q , where p, q ∈N}.
We define our sets Ft for t ∈D thus.
(5.2.5.1) If t > 1, then let Ft =X .
(5.2.5.2) Let F1 =X −B .
(5.2.5.3) Let F0 be an open set containing A such that F 0 is disjoint from B .
(5.2.5.4) For 0 < t < 1, we proceed by recursion. Write t = (2m + 1)2−n and let Ft be an open set containing

F (2m)2−n whose closure F t ⊂ F(2m+2)2−n (by normality).

It is plain to see that the conditions of the previous lemma apply, and it constructs our continuous function f .
By construction, f |A= 0 and f |B = 1.

Theorem 5.2.6 (Tietze extension). — Suppose X is a normal space, and suppose A a closed subspace of X . Then any
continuous map A //[−1,1] can be extended to a continuous map X //[−1,1] .



CHAPTER 6

METRIZATION THEOREMS

6.1. First and second countability

Definition 6.1.1. — Suppose X a space. Then X is said to satisfy the first axiom of countability or to be first-countable
if for every point x ∈X there is a countable fundamental system of neighborhoods of x.

The space X is said to satisfy the second axiom of countability or to be second-countable if the topology on X has
a countable base.

Lemma 6.1.2. — The second axiom of countability implies the first.

Example 6.1.3. — The ordinal ω1 (with the order topology) satisfies the first but not the second axiom of count-
ability, and the ordinalω1+ 1 satisfies neither axiom of countability.

Lemma 6.1.4. — Any subspace of a first-countable (respectively, second-countable) space is first-countable (resp., second-
countable), as is any countable product of first-countable (resp., second-countable) spaces. Additionally, any continuous
open image of a second-countable space is second-countable.

Exercise 41. — Give an example demonstrating that an uncountable product of second-countable spaces need not
be first-countable.

Exercise 42. — Suppose X a first-countable space. Show that for any subset A⊂ X , a point x ∈ X is contained in
the closure A if and only if there is a sequence of points of A converging to x. Show also that a map f : X //Y to a
topological space Y is continuous if and only if, for any convergent sequence xn→ x, the sequence f (xn) converges
to f (x). Finally, show that X is sequentially compact if and only if it is countably compact.

Example 6.1.5. — The real line R is second countable, as is any countable product of R with itself.

Exercise 43. — Suppose X a second-countable space; show that the set Op(X ) has cardinality not greater than
i1 = #R (i.e., the cardinality of the continuum).

Definition 6.1.6. — A space X is said to be separable if it has a countable dense subset. A space X is said to be
Lindelöf if every open cover has a countable subcover.

Theorem 6.1.7. — Second-countable spaces are both separable and Lindelöf.

Proof. — SupposeB = {B1,B2, . . .} a countable base for a space X .
We show first that X is Lindelöf. Suppose U an open covering of X . For every natural number j , select, if

possible, an element Uj ∈U containing B j . This defines a countable subsetU ′ := {Uj1
, Uj2

, . . .} ⊂U indexed by a
subset J ⊂N. I claim that this is a subcover. Indeed, for any point x ∈ X , an element U ∈U contains x, and so for
some j , we have x ∈ B j ⊂U . Hence j ∈ J , whence some Uj ∈U ′ contains x.

Showing that X is separable is even easier. Simply select a point x j ∈ B j for every j ∈ N. This set is dense.
(Why?)
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Exercise 44. — Suppose X a metrizable space. Show that the following conditions are equivalent on X : (1) X
satisfies the second axiom of countability; (2) X is separable; and (3) X is Lindelöf. Check that the Sorgenfrey line
is first-countable, separable, and Lindelöf, but not second-countable.

Lemma 6.1.8 (Tychonoff). — Every T3 Lindelöf space is T4.

Proof. — Suppose A and B disjoint closed subsets of X . Since X is regular, for any point a ∈ A there is a neighbor-
hood of a whose closure fails to intersect B , and thus the familyU of open sets whose closures do not intersect B
cover A. Similarly, the family V of open sets whose closures do not intersect A cover B . Now we form a cover

U ∪V ∪{X − (A∪B)}

of X .
It now follows from the Lindelöf property that there are countable subcovers {U1, U2, . . .} ⊂ U of A and

{V1,V2, . . .} ⊂ V of B . Now set

U ′r :=Ur −
⋃

m≤r

Vm and V ′s :=Vs −
⋃

m≤n

Um

for every natural number r and s . One verifies immediately that U ′r∩V ′s =∅ for every pair (r, s) of natural numbers,
and so

U =
⋃

r≥1

U ′r and V =
⋃

s≥1

V ′s

are disjoint open neighborhoods of A and B , respectively.

Exercise 45. — Show that any locally compact Hausdorff space is Tychonoff.

Example 6.1.9. — The product of two Lindelöf spaces need not be Lindelöf; indeed, the product of the Sorgenfrey
line with itself is the Sorgenfrey plane, which is not Lindelöf. Similarly, a subspace of a Lindelöf space need not be
Lindelöf.

6.2. Urysohn’s metrization theorem

Exercise? 46. — Prove the following

Theorem 6.2.1 (Embedding). — A space is a Tychonoff space if and only if it is homeomorphic to a subspace of a cube
[0,1]A for some set A.

Begin by proving the following

Lemma 6.2.2 (Embedding). — Suppose X a space, and supposeF a family of continuous maps f : X //Y f (valued
in possibly many different spaces).

(6.2.2.1) The evaluation map is a continuous map E : X //
∏

f ∈F Y f .
(6.2.2.2) The evaluation map E is open if for any closed subset A⊂ X and any point x ∈ X −A, there exists an element

f ∈F such that f (x) /∈ f (A).
(6.2.2.3) The evaluation map E is injective if and only if for any two distinct point x, y ∈ X , there exists an element

f ∈F such that f (x) 6= f (y).

Theorem 6.2.3 (Urysohn metrization). — The following are equivalent for a space X .

(6.2.3.1) X is second countable and T3.
(6.2.3.2) X is homeomorphic to a subspace of the Hilbert cube [0,1]N.
(6.2.3.3) X is separable and metrizable.
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Proof. — It is not hard to see that the Hilbert cube is separable and metrizable; hence so is any subspace. (Why?)
Any metrizable space is T3, and any separable metrizable space is second countable. (Check this!)
Hence it remains to show that a T3 space that satisfies the second axiom of countability is homeomorphic to a

subspace of the Hilbert cube. Using the embedding lemma above, it is enough to construct a countable familyF of
continuous functions X //[0,1] such that for any closed subset A⊂ X and any point x ∈ X −A, there exists an

element f ∈F such that f (x) /∈ f (A). SupposeB a countable base for the topology of X , and set

A := {(U ,V ) ∈B ×B | U ⊂V }.
One sees that A is a countable set. Since X is T3 and Lindelöf, it is also T4 by Tychonoff’s lemma. So, using
Urysohn’s lemma, choose, for any (U ,V ) ∈ A , a Urysohn function f(U ,V ) : X //[0,1] such that f |U = 0 and
f |X−V = 1; set

F := { f(U ,V ) | (U ,V ) ∈A}.
This is a countable set of functions, and it remains to show that it has the desired properties. Suppose A⊂X a closed
subset, and suppose x ∈X −A. We may now choose a basic open V ∈B such that x ∈U ⊂X −A and a basic open
U ∈B such that x ∈U ⊂V . (Why?) Since (U ,V ) ∈A , the corresponding function f(U ,V ) does the job.

Exercise 47. — Fill in the details I skipped in the proof of the Urysohn metrization theorem, and write up a com-
plete proof.

6.3. The Bing–Nagata–Smirnov metrization theorem

Definition 6.3.1. — A family U of subspaces of a topological space X is said to be locally finite if every point is
contained in a neighborhood that intersects only finitely many elements ofU . One says thatU is discrete if every
point is contained in a neighborhood that intersects only one element ofU .

A familyV of subspaces of a space X is said to be σ -locally finite (respectively, σ -locally discrete) if it can be written
as the union of a countable collection of locally finite (resp., locally discrete) families of subspaces of X .

Theorem 6.3.2 (Bing–Nagata–Smirnov metrization). — The following are equivalent for a space X .
(6.3.2.1) X is metrizable.
(6.3.2.2) X is T3, and there is a σ -locally finite base for X .
(6.3.2.3) X is T3, and there is a σ -locally discrete base for X .

Outline of proof. — First, observe that the final condition implies the penultimate condition. The first two lemmas
here will show that the second condition implies the first.

Lemma 6.3.3. — A T3 space whose topology has a σ -locally finite base is T4.

Lemma 6.3.4. — A T3 space whose topology has a σ -locally finite base is metrizable.

Lemma 6.3.5. — Any open cover of a metrizable space has a σ -discrete open refinement.

It is now an immediate consequence that a metrizable space has a σ -discrete base.

6.3.6. — One question that might naturally arise here is: so? I can show that if a space satisfies some abstract
conditions, then it can be given a metric that gives rise to its topology. Let’s list some of the purely topological
corollaries of the metrizability of a space X .
(6.3.6.1) A subset U ⊂X is open if and only if no sequence of X −U converges to a point of U .
(6.3.6.2) Dually, for any subspace A ⊂ X , a point x ∈ X is a member of the closure A if and only if there is a

sequence of points in A that converge to A.
(6.3.6.3) For any space Y , function f : X //Y is continuous if and only if, for any convergent sequence xn → x

in X , the sequence f (xn)→ f (x).
(6.3.6.4) A subspace A⊂X is compact if and only if it is countably compact, if and only if it is sequentially compact.
(6.3.6.5) X is T6.
(6.3.6.6) X is paracompact, i.e., every open cover of X has a locally finite open refinement.
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CHAPTER 7

SHEAF THEORY

7.1. Presheaves

Example 7.1.1. — Let us begin right away with a motivational example. Suppose X is a topological space, and let’s
contemplate, for any open set U ∈ Op(X ), the set

O cts
X (U ) := { f : U //R | f is continuous}.

It is not difficult to see that if I have a continuous function f on U , then I may restrict it to a continuous function
f |V on any open subset V ⊂U . This defines a restriction map

ρV⊂U : O cts
X (U ) //O cts

X (V ) .

I can, of course, be rather silly in how I restrict: I might have taken V = U ; then my restriction map is simply the
identity.

On the other hand, what if I consider three open sets W ⊂ V ⊂ U in X ? If I restrict a function f on U to a
function on V , and thence to a function on W , I see that I get the same answer as if I had restricted f all the way
from U to W . That is, we get an equality of maps

ρW⊂V ◦ρV⊂U = ρW⊂U .

We can now attempt to study, not the individual sets O cts
X (U ) or the restriction maps ρV⊂U , but the entire system

made up of these:
O cts

X :=
�

(O cts
X (U ))U∈Op(X ), (ρV⊂U )V⊂U∈Op(X )

�

.

Example 7.1.2. — There was nothing particularly special about the topological space R in the above example. I
could try the same trick with any “target” topological space Y : for any open set U ∈ Op(X ), write

O Y
X (U ) := { f : U //Y | f is continuous}.

Again, it’s pretty clear that we can restrict continuous maps, and so we have a similar structure

O Y
X :=

�

(O Y
X (U ))U∈Op(X ), (ρV⊂U )V⊂U∈Op(X )

�

.

Example 7.1.3. — More interestingly, suppose p : Y //X a continuous map. Then we can make a similar defini-
tion: for any open set U ∈ Op(X ), set

Γ(p)(U ) = Γ(X /Y )(U ) := {s : U //Y | s is continuous and p ◦ s = idU }.
We say that Γ(X /Y )(U ) is the set of sections of p over U .

Definition 7.1.4. — Suppose X a topological space. Then a presheaf F on X is the following data:
(7.1.4.A) for any open set U ∈ Op(X ), a setF (U ), and
(7.1.4.B) for any open sets U ,V ∈ Op(X ) with V ⊂U , a restriction map ρV⊂U : F (V ) //F (U ) .
These data are subject to the following conditions.
(7.1.4.1) For any open set U ∈ Op(X ), the map ρU⊂U is the identity map onF (U ).
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(7.1.4.2) For any three open sets U ,V ,W ∈ Op(X ) with W ⊂V ⊂U , we have

ρW⊂V ◦ρV⊂U = ρW⊂U : F (U ) //F (W ) .

In other words, the data of a presheaf is a pair

F :=
�

(F (U ))U∈Op(X ), (ρV⊂U )V⊂U∈Op(X )

�

,

and these data are subject to the axioms ρU⊂U = id, and ρW⊂V ◦ρV⊂U = ρW⊂U .
For an open set U ∈ Op(X ), an element s ∈F (U ) is sometimes called a section ofF over U .

7.1.5. — This sort of pattern appears all the time: to any “object” of some collection (in this case Op(X )), you
assign a set, and to any “relation” between two objects (in this case set inclusion), you assign a map between the
corresponding sets. Sometimes that map goes in the same direction as your relation; sometimes (as here), the map
goes in the opposite direction.

When you have these data, then you want to impose some conditions. These conditions always amount to the
same thing: when the relation is trivial (U ⊂ U , for example), the corresponding map has to be the identity, and
composing relations (W ⊂V ⊂U ) gives rise to compositions of maps.

These data, with these conditions, are collectively called a functor in general. When the maps go in the same
direction as the relation, then the functor is said to be covariant; when the maps go in the opposite direction, the
functor is said to be contravariant. Thus presheaves are particular kinds of functors. We won’t say more about this
here, but you can expect functors to appear again in your mathematics education!

7.1.6. — One of the most challenging aspects of modern mathematics for beginners is to maintain a clear idea
which of a list of bullet points are data, and which are conditions. In the case of a presheaf F on a space X , it’s a
little more subtle than anything we’ve seen so far: the data are the choice of all the setsF (U ) and the choice of all
the restriction maps ρV⊂U : F (V ) //F (U ) . It isn’t enough to say that there are suitable maps out there; one has
to specify them as part of the information of a presheaf.

Example 7.1.7. — Our definition is general enough to allow for some “degenerate” examples of presheaves. For
any set S, one may form the constant presheaf PS at S, which assigns to any open set U the set S, and to any open
sets U ,V ∈ Op(X ) with V ⊂U the identity map on S.

Example 7.1.8. — It’s not difficult to see that for any topological space X , the objects O Y
X (and hence the object

O cts
X ) are presheaves on X .

Example 7.1.9. — Likewise, for any continuous map p : Y //X , the object Γ(Y /X ) is a presheaf on X . Let’s
contemplate this example in a few particular cases.

(7.1.9.1) Suppose p is a homeomorphism. Then Γ(Y /X ) is not so very interesting. For any open set U ∈ Op(X ),
there is exactly one section of p over U . It’s not hard to see that, in this case, Γ(Y /X ) is the constant
presheaf on one point.

(7.1.9.2) Now if p is not a homeomorphism, but a local homeomorphism (so that every point of Y in contained
in a neighborhood V such that the restriction of p to V is open and injective), then the story becomes
a lot more interesting. First, consider the folding map ∇ : S1 t S1 // S1 ; in this case Γ(∇) is somewhat
more interesting: to any interval (a, b ) it assigns a two-point set. But if the open set is more complicated,
the value of Γ(∇) is more complicated as well. If, for example, U is the disjoint union of two intervals,
Γ(∇)(U ) is a four point set. And in general, Γ(∇)(V ) has cardinal 2n , where n is the number of connected
components of V . Note, in particular, that Γ(∇)(S1) is a two-point set also.

(7.1.9.3) But now consider the map p : S1 // S1 given by ξ � //ξ 2 (with respect to complex multiplication,
thinking of S1 ⊂C). This too is a local homeomorphism, but observe that the presheaf Γ(p) has no global
sections, i.e., Γ(p)(S1) = ∅. One way to think of this is to think that there is no single, consistent way to
extract square roots of complex numbers. This is quite striking: the fiber over each point of p is two points,
just as in the previous example. But the presheaf Γ(p) has shown us that there is something nontrivial about
our map p.
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(7.1.9.4) Here’s yet another example in the same vein: consider the exponential map exp : C //C× :=C−{0} .
We can contemplate the presheaf Γ(exp), and we see immediately that over a sufficiently small open neigh-
borhood U of any point in C×, there are countably infinitely many elements of Γ(exp)(U ); these corre-
spond to the branches of the logarithm: if we write a complex number z = r exp(iθ), then we might write
log(z) = log |r |+ iθ; however, this is ambiguous, I can add 2kπ to θ. Once again, however, one sees that
one cannot make a consistent choice of a branch of the logarithm: there are no global sections of Γ(exp)!

Example 7.1.10. — Suppose X a space, and suppose A ∈ Op(X ) a particular fixed open set. We have an associated
presheaf hA defined by the rule

hA(U ) :=

(

? if U ⊂A
∅ else.

In this case, the restriction maps are forced on us: for any open sets V , U ∈ Op(X ) with V ⊂ U , there is necessarily
only one map hA(U ) // hA(V ) . Observe that we cannot expect this in general: ordinarily, we’ll have to put some
effort into describing the restriction maps!

This gives us a way (in fact, a very powerful way) of “representing” open sets A ∈ Op(X ) as presheaves; conse-
quently, the presheaves hA are known as representable presheaves, or presheaves represented by A∈ Op(X ).

Exercise 48. — Suppose X a space, A ∈ Op(X ) an open subset. Suppose I attempted to define a presheaf hA the
other way around from our representable friend:

hA(U ) :=

(

∅ if U ⊂A
? else.

What goes wrong here? Why does this not define a presheaf?

Example 7.1.11. — Suppose S is a set, and suppose X a space with a distinguished point x ∈X . Then the skyscraper
presheaf at x with value S is defined by the rule

Sx (U ) :=

(

S if x ∈U
? else.

7.1.12. — We can also ask for additional structure on a presheafF . If all the setsF (U ) are equipped with a group
structure, and all the restriction maps ρV⊂U are group homomorphisms, then the presheafF is said to be a presheaf
in groups. Similarly, if all the setsF (U ) are equipped with an abelian group (respectively, ring, vector space, algebra,
...) structure, and all the restriction maps ρV⊂U are group (resp., ring, vector space, algebra, ...) homomorphisms,
then the presheaf F is said to be a presheaf in abelian groups (resp., rings, vector spaces, algebras, ...). The key point
here is that both the setsF (U ) and the maps ρV⊂U carry this added structure.

Example 7.1.13. — Suppose X =Rn with the euclidean topology. Then for any open set U ⊂Rn , we can contem-
plate the set

O an
X (U ) =C

ω(U ) := { f : U //R | f is analytic}.

(Recall that a function f on an open set U is analytic if it is infinitely differentiable and, for any point x ∈ U , there
is a neighborhood of x in U such that the Taylor series of f at x converges to f . This is surely a presheaf as well;
moreover, since the sum, difference, and product of any two analytic functions is analytic, we can see that O an

X is a
sheaf of rings (even of R-algebras).

Definition 7.1.14. — A morphism or simply map of presheaves φ : F //G is the following data: for any open set
U ∈ Op(X ), a map (called the component of φ)

φU : F (U ) //G (U ) ,
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subject to the following condition: for any open sets U ,V ∈ Op(X ) with V ⊂U , the following diagram commutes:

F (U )
ρV⊂U

��

φU // G (U )
ρV⊂U
��

F (V )
φV

// G (V ),

that is, for any section s ∈F (U ), one has

ρV⊂U (φU (s)) =φV (ρV⊂U (s)).

Given morphisms of presheaves φ : F //G and ψ : G //H , we can form the composite ψ ◦φ : F //H
in the following manner: for any open set U ∈ Op(X ), set

(ψ ◦φ)U =ψU ◦φU .

This defines a morphism of presheaves F //H as desired.
A morphism of presheaves φ : F //G is said to be an isomorphism if there exists a morphism of sheaves

ψ : G //F such that both ψ ◦φ= id and φ ◦φ= id.

Exercise 49. — (49.1) Check that our description of the composite of two morphisms of presheaves is indeed again
a morphism of presheaves.

(49.2) Verify that if we have three morphisms of presheaves φ : F //G , ψ : G //H , and χ : H //K , then
one has

(χ ◦ψ) ◦φ= χ ◦ (ψ ◦φ).
(49.3) Finally, show that a morphism of presheaves φ : F //G is an isomorphism if and only if, for any open set

U ∈ Op(X ), the components φU are all bijections.

Definition 7.1.15. — We say that a morphism F //G of presheaves is injective if for every open set U ∈ Op(X ),
the corresponding map F (U ) //G (U ) is injective. (We’ll need to be a little more cautious when we define sur-
jectivity.)

Notation 7.1.16. — For any space X , and any presheavesF andG , write MorX (F ,G ) for the set of all morphisms
of presheaves F //G .

Exercise 50. — Show that for any space X , and any pair of open sets U ,V ∈ Op(X ) with V ⊂ U , there is a unique
morphism of presheaves hV

// hU .

Exercise? 51. — Show that for any space X , any open set U ∈ Op(X ), and any presheafF on X , there is a natural
bijection

ΦU :F (U )∼=MorX (hU ,F ).
This word natural gets thrown around a lot. In this case, we can say exactly what we mean by it: for any pair of

open sets U ,V ∈ Op(X ) with V ⊂ U , we have our unique morphism of presheaves j : hV
// hU . Composition

with j induces a map − ◦ j : MorX (hU ,F ) // MorX (hV ,F ) . (How?) For an extra challenge, show that in this
case, the following diagram of sets commutes:

F (U )
ρU⊂V

��

ΦU // MorX (hU ,F )
−◦ j
��

F (V )
ΦV

// MorX (hV ,F ).

Exercise 52. — Show that for any two spaces X and Y , the presheaf O Y
X of local Y -valued functions is isomorphic

to the presheaf Γ(Y ×X /X ) of local sections of the projection map Y ×X //X .
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7.2. Stalks

Definition 7.2.1. — Suppose X a space, and suppose F a presheaf on X . Then for any point x ∈ X , consider the
set

∐

x∈U∈Op(X )

F (U ) = {(U , s) | x ∈U ∈ Op(X ), s ∈F (U )}.

On this set we may impose an equivalence relation ∼ in the following manner. For any two elements (U , s) and
(V , t ), we say that (U , s) ∼ (V , t ) if and only if there exists an open neighborhood W ⊂ U ∩V of x such that
ρW⊂U (s) = ρW⊂V (t ). Now define the stalk ofF at x to be the set

Fx :=







∐

x∈U∈Op(X )

F (U )







.

∼ .

The equivalence class of a section s under this equivalence relation is called the germ of s , and is dented sx .

Example 7.2.2. — Suppose p : Y //X a covering space, i.e., a surjective continuous map with the property that
every point x ∈ X is contained in an open neighborhood U such that p−1U is a disjoint union

∐

α∈ΛVα of open
subsets Vα ⊂ Y such that p|Vα

: Vα
// U is a homeomorphism. It is easy to see that such a map must be a local

homeomorphism, but here we have required much more: we have required that we can choose the neighborhoods
of various points in a fiber in a consistent manner.

For any point x ∈X , we can compute the stalk Γ(Y /X )x easily: there exists an open neighborhood U of x whose
inverse image is homeomorphic (via p) to a disjoint union of copies of U . But now it’s easy to see that a section of
Γ(Y /X ) over this open set U is completely determined by where it sends out point x. For every sub-neighborhood
V ⊂U , we’ll be in the same situation, so the equivalence relation doesn’t change anything from this point on as the
neighborhoods get smaller. Hence the stalk Γ(Y /X )x is simply the fiber p−1(x) again.

We will undertake a more systematic study of coverings spaces very soon.

Exercise 53. — Suppose p : Y //X any continuous map. Is it true that for any point x ∈ X , the stalk Γ(Y /X )x
is the fiber p−1(x)? Prove or give a counterexample.

Example 7.2.3. — Let us consider the case of two topological spaces X and Y , and let us consider the presheaf O Y
X

of local continuous functions on X valued in Y . What is the stalk of this presheaf at a point x ∈X ? It’s difficult to say
in familiar language. The elements of O Y

X ,x are equivalence classes of continuous functions defined in a neighborhood
of x, where we declare two such functions to be equivalent when there is a neighborhood of x on which they agree.
These equivalence classes are known as germs of continuous functions.

Example 7.2.4. — Suppose X =Rn , and consider the presheaf O an
X of local analytic functions on X . For any point

x ∈X , the stalk O an
X ,x is the set of all power series at x with a positive radius of convergence. This is a ring, sometimes

denoted R{x1, x2, . . . , xn}.

7.3. Sheaves

Example 7.3.1. — To motivate the sheaf axiom, let’s briefly recall a little lemma we proved in Exercise 18 some
time back. If X is a space with an open covering V , and if for any V ∈ V we are given a continuous function
fV : V //Y with the property that for any elements V ,W ∈ V , one has

fV |V∩W = fW |V∩W : V ∩W //Y ,

then there exists a unique continuous map f : X //Y such that for any V ∈ V ,

f |V = fV : V //Y .

7.3.2. — SupposeF a presheaf on a space X . For any open set U , and any cover {Uα}α∈Λ of U , we can contemplate
the following diagram:

(7.3.2.1) F (U ) //
∏

α∈Λ
F (Uα)

//
//
∏

β,γ∈Λ
F (Uβ ∩Uγ ).
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Let us describe these maps in more detail. The first map is the assignment

F (U ) //
∏

α∈Λ
F (Uα)

s � //
�

ρUα⊂U (s)
�

α∈Λ
.

The other two maps are the assignments
∏

α∈Λ
F (Uα) //

∏

β,γ∈Λ
F (Uβ ∩Uγ )

(sα)α∈Λ
� //

�

ρUβ∩Uγ⊂Uβ
(sβ)

�

β,γ∈Λ

and
∏

α∈Λ
F (Uα) //

∏

β,γ∈Λ
F (Uβ ∩Uγ )

(sα)α∈Λ
� //

�

ρUβ∩Uγ⊂Uγ
(sγ )
�

β,γ∈Λ

We can ask whether the diagram (7.3.2.1) is an equalizer, i.e., whether the map F (U ) //∏F (Uα) is
an injective map whose image consists of exactly those elements that have the same values under the maps
∏

F (Uα) //
∏

F (Uβ ∩Uγ ) . In other words, (7.3.2.1) is an equalizer if and only if the following condition is
satisfied: for every α ∈Λ there is a section sα ∈F (Uα) such that for any pair β,γ ∈Λ, the restrictions

ρUβ∩Uγ⊂Uβ
(sβ) = ρUβ∩Uγ⊂Uγ

(sγ )

coincide, then there exists a unique section s ∈F (U ) such that ρUα⊂U (s) = sα.

Definition 7.3.3. — A presheaf F on a space X is said to be a sheaf if, for any open set U ∈ Op(X ) and any open
cover {Uα}α∈Λ of U , the diagram

F (U ) //
∏

α∈Λ
F (Uα)

//
//
∏

β,γ∈Λ
F (Uβ ∩Uγ ).

is an equalizer in the sense above.

7.3.4. — This is a little tricky, so let’s discuss this. A sheafF on a space X is a presheaf that has a powerful local-to-
global property.

To illustrate this local-to-global property, consider the case of an open cover with just two open sets. Suppose
that U ⊂ X is an open set, which we have written as a union U =V ∪W for some open sets V ,W ⊂ X . Then the
sheaf condition for F says that if we are given sections sV ∈ F (V ) and sW ∈ F (W ) that match up on V ∩W (so
that ρV∩W⊂V (sV ) = ρV∩W⊂W (sW )), then there is one and only one set s ∈ F (U ) who restrictions to V and to W
are sV and sW , respectively.

What does this say? It says that sections glue uniquely. In other words, specifying a section ofF over an open set
U ⊂X is the same as specifying a compatible family of sections ofF over each element of an open cover ofF .

Example 7.3.5. — Our first example of this section shows that, indeed, for any two topological spaces X and Y ,
the presheaf O Y

X is a sheaf, called the sheaf of local continuous functions on X with values in Y .

Example 7.3.6. — More generally, one can see that for any continuous map p : Y //X , the associated presheaf
Γ(Y /X ) is indeed a sheaf, called the sheaf of local sections of p.

Example 7.3.7. — For an space X , any point x ∈X , and any set S, the skyscraper presheaf Sx is a sheaf as well.

Exercise 54. — Show that for any sheafF , the map

F (U ) //∏
x∈UFx

is injective. Give a counterexample to show that this is not true of presheaves.

Lemma 7.3.8. — SupposeF a sheaf on a space X . ThenF (∅) = ?.

Lemma 7.3.9. — Suppose F and G sheaves on a space X . Then if f , g : F //G are two morphisms such that for
every point x ∈X , the induced maps fx , gx : Fx

//Gx on stalks coincide (so that fx = gx ), then f = g .

Proof. — This follows immediately from the previous exercise.
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Proposition 7.3.10. — SupposeF and G sheaves on a space X . Then a morphism φ : F //G is an isomorphism, or
an injection, if and only if, for every point x ∈X , the map on stalks Fx

//Gx is so.

Proof. — The injectivity statement follows from the fact that if the composite of two maps is injective, then the
first of the two must also be injective.

Now suppose U ∈ Op(X ) any open set, and consider the component φU : F (U ) //G (U ) . The claim is that
it is surjective. To demonstrate this, suppose s ∈ G (U ) a section. For every point x ∈ U , the element (U , s) ∈ Gx
has an inverse image in Fx , i.e., for each point x ∈ U there is a pair (Vx , tx ), consisting of an open neighborhood
Vx ⊂U of x along with a section tx ∈F (Vx ) such that φVx

(tx ) = ρVx⊂U (s). Since φ is injective, for any two points
x, y ∈U , we have

ρVx∩Vy⊂Vx
(tx ) = ρVx∩Vy⊂Vy

(ty ).

The sheaf axiom applied to the open cover {Vx | x ∈ U } of U now implies that there is a global section t ∈ F (U )
such that tx = ρVx⊂U (t ). And now φ(t ) ∈ G (U ) is the unique section whose restriction to any Vx is φVx

(tx ) =
ρVx⊂U (s), namely, s itself!

Warning 7.3.11. — Note that what we have not said is that two sheaves F and G , all of whose stalks are iso-
morphic, are themselves isomorphic. This is false. We must have a morphism F //G inducing the stalkwise
isomorphism in order to make this conclusion. This sounds like a minor point, but it is extremely important.

Indeed, recall our two examples of double covers of the circle: we were given two local homeomorphisms ∇ :
S1 t S1 // S1 and p : S1 // S1 . The former map is simply the folding map, and the second is z � // z2 . We saw
that, while Γ(∇) was simply the constant sheaf on a two point set, Γ(p) was a more subtle object, with no global
sections. In this case, the stalk over any point x ∈ S1 is always the same: simply two points. But the two sheaves
differ dramatically! The point is that there is no morphism of sheaves between Γ(∇) and Γ(p) inducing bijections
on the stalks. This situation is quite typical, and it’s one that sheaves are particularly well-adapted to.

Exercise 55. — Suppose n a positive integer. Consider the continuous map pn : S1 // S1 given by z � // zn

(where again we think of S1 as embedded in C, where we may use complex multiplication). Consider also the
n-fold folding map ∇n : S1 t S1 t · · · t S1 // S1 . Prove that Γ(pn) and Γ(∇n) are both sheaves, that their stalks at
any point are isomorphic, but the sheaves themselves are not isomorphic.

7.4. The espace étalé and sheafification

Definition 7.4.1. — A continuous map p : Y //X is said to be a local homeomorphism if every point y ∈ Y is
contained in a neighborhood V such that p is open and injective.

7.4.2. — Suppose X a space andF a presheaf on X . Consider the set Ét(F ) :=
∐

x∈X Fx ; there is an obvious map
pF : Ét(F ) //X whose fibers are precisely the stalks ofF . For any open set U and any section s ∈F (U ), there

is a corresponding map σs : U // Ét(F ) , x � // sx , such that p ◦ s = id. (This is the origin of the term “section.”)

Definition 7.4.3. — Suppose X a space andF a presheaf on X . The espace étalé ofF is the set Ét(F ) equipped with
the finest topology such that for any section s ∈ F (U ), the corresponding map σs : U // Ét(F ) is continuous.

That is, we declare a subset V ⊂ Ét(F ) to be open if and only if, for any open set U ∈ Op(X ) and any section
s ∈F (U ), the inverse image σ−1

s (V ) is open in U .

Exercise 56. — Show that for any space X and any presheafF on X , the natural morphism pF : Ét(F ) //X is
a local homeomorphism.

Exercise 57. — Suppose S a set, and suppose FS is the constant presheaf at S on a space X . Then show that the
éspace étalé ofFS is the fold map∇(S) : X t(S) //X , where X t(S) is the S-fold disjoint union of X with itself:

X t(S) :=
∐

s∈S

X =X × Sδ .
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Lemma 7.4.4. — Suppose p : Y //X a local homeomorphism. Then the éspace étalé of the sheaf Γ(Y /X ) is canoni-
cally homeomorphic over X to Y . That is, there is a unique homeomorphism Y // Ét(Γ(Y /X )) such that the diagram

Ét(Γ(Y /X ))

pΓ(Y /X )
��????????

w // Y

p
�����������

X
commutes.

Proof. — Suppose s ∈ Ét(Γ(Y /X )) a germ of a section near x ∈ X . Then its value w(s) = s(x) at x is well-defined.
This defines a map w : Ét(Γ(Y /X )) //Y such that p ◦w = pΓ(Y /X ).

In the other direction, suppose y ∈ Y , and suppose x = p(y). Then there exist open neighborhoods U of x
and V of y such that p restricts to a homeomorphism V // U ; denote by s : U //V its inverse, and define
v(y) ∈ Γ(Y /X )x as the germ of the section s . The class v(y) does not depend upon the choice of U or V . This
defines an inverse v : Y // Ét(Γ(Y /X )) to the map w.

It remains to show that w is continuous and open. We leave this to the reader.

Definition 7.4.5. — Suppose X a space and F a presheaf on X . The sheafification of F is the sheaf aF :=
Γ(Ét(F )/X ) of sections of the projection map p : Ét(F ) //X . The canonical morphism of presheaves F //aF
that assigns to any section s ∈F (U ) the local section x � // sx is called the unit morphism.

Proposition 7.4.6. — For any presheafF on a space X , the natural morphism F //aF induces an isomorphism on
all stalks.

Proof. — By 7.4.4, the stalks of aF correspond under the unit morphism to the fibers of Ét(F ) //X , which in
turn are the stalks ofF .

Corollary 7.4.7. — For any sheafF on a space X , the unit morphism F //aF is an isomorphism.

Corollary 7.4.8. — There is a bijective correspondence between isomorphism classes of sheaves on X and homeomor-
phism classes of local homeomorphisms Y //X .

Exercise 58. — Recall that on a space X , the presheaf O bdd
X of local bounded continuous functions (valued in R)

may not be a sheaf. Describe its sheafification.

Example 7.4.9. — The constant sheaf FS at a set S on a space X is the sheafification of the constant presheafPS at
S. Observe that the constant sheaf is not really constant: it can take many different values on an open set U ⊂X .

Theorem 7.4.10. — Suppose X a space, suppose F a presheaf on X , and suppose G a sheaf on X . Then any morphism
F //G factors uniquely through the unit. In other words, for any morphism F //G , there exists a unique morphism
aF //G such that the diagram

F

��?????????
// G

aF

??���������

commutes.

Proof. — Let us show that unicity is guaranteed once the existence of the morphism aF //G satisfying the
diagram above is confirmed. Indeed, any two morphisms aF //G satisfying the diagram above must agree an all
stalks, since the unit morphism F //aF is a bijection on all stalks. Now we may employ 7.3.9 to see that the
morphisms aF //G coincide.

To verify existence, observe that we can simply apply a to the morphism F //G to get a morphism of sheaves
aF //aG ; since the unit morphism G //aG is an isomorphism, we can compose aF //aG with the inverse
aG //G to get the desired morphism aF //G .
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7.4.11. — There is a more sophisticated way of talking about all this. The construction of the espace étalé is a functor
Ét from the category P reS h(X ) of presheaves on a space X to the category (LH /X ) of local homeomorphisms
to X . Now (LH /X ) is actually equivalent (via the sections sheaf functor Γ) to the category S h(X ) of sheaves
on X . Now the composite a = Γ ◦ Ét is the sheafification functor, which is left adjoint to the inclusion S h(X ) ⊂
P reS h(X ).

7.5. Direct and inverse images of sheaves

Definition 7.5.1. — For any two continuous maps f : X //Y and h : Z //Y , the fiber product X ×Y Z is the
set

X ×Y Z := {(x, z) ∈X ×Z | f (x) = h(z)} ⊂X ×Z ,
equipped with the subspace topology. (Note that the notation here is ambiguous, since it makes no explicit mention
of the maps f and h.) The (continuous) projection X ×Y Z //X is called the pullback of the map h.

Exercise 59. — For any map f : X //Y , contemplate the continuous map ∆ f : X //X ×Y X given by the
assignment x � //(x, x) . Show that f is a local homeomorphism if and only if both f and∆ f are open maps.

Exercise 60. — Show that the pullback of a local homeomorphism is a local homeomorphism.

Definition 7.5.2. — Suppose f : X //Y a continuous map.
(7.5.2.1) For any sheafF on X , define the direct image f?F ofF as the sheaf that assigns to any open set V ∈ Op(Y )

the set
f?F (V ) :=F ( f

−1V ).
(7.5.2.2) For any sheaf G on Y , we define the inverse image f ?G as the sheaf of sections of the pullback

X ×Y Ét(G ) //X of the map pG : Ét(G ) //Y

Example 7.5.3. — Suppose A⊂X a subspace of a topological space X . Then for any sheafF on X , if i denotes the
inclusion map, the sheaf i?F on A is denoted F|A and is called the restriction of F to A. If, in particular, A is an
open set, then the restrictionF|A assigns to any open set U ⊂A the setF (U ). On the other hand, if A= {x}, then
F|{x} is simply the stalk ofF at x, regarded as a sheaf on {x}.

Exercise 61. — Any sheaf on the one-point space ? is uniquely determined by a set S. Show that the direct image of
such a sheaf along the inclusion ? //X of a point x of a space X is the skyscraper sheaf Sx . Show that the inverse
image of such a sheaf under the unique map X //? is the constant sheaf aFS .
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CHAPTER 8

COVERING SPACE THEORY

8.1. Connectedness and π0

Warning 8.1.1. — The definitions we give here do not coincide with definitions in many other texts. The defini-
tions agree in “good cases,” i.e., in all the cases with which we will have to deal in the sequel; however, there are
important ways in which our definitions differ from those found elsewhere in the literature.

8.1.2. — For any set S, consider the constant presheaf PS on a space X ; its associated sheaf is the constant sheafFS .
The unit morphism PS

//FS induces a canonical map S //FS (X ) on global sections. If S is the one-point set,
then this map is an isomorphism. If S is empty, then this map is a bijection unless X is empty.

An alternate description of the sheaf aFS is the following. It is the sheaf O Sδ
X of local continuous functions valued

in the discrete space Sδ .

Definition 8.1.3. — A space X is said to be connected if for any set S, the obvious map S //FS (X ) (which assigns
to any element s ∈ S the global section x � //(x, s) ) is a bijection.

8.1.4. — Thus a space X is connected if and only if it is nonempty and every global section of the constant sheaf at
S is the inclusion X ×{s}δ ⊂X ×Sδ for some s ∈ S. Equivalently, X is connected if and only if the only continuous
maps X // Sδ are constant.

Definition 8.1.5. — Suppose X a space. Then πét
0 X is a set along with a global section u ∈ Fπét

0 X (X ) such that for

any set S and any global section σ ∈ FS (X ), there exists a unique morphism of sheaves eσ : aFπét
0 X //aFS such

that eσ(u) = σ .

8.1.6. — Note that πét
0 X is a set with a continuous map X //(πét

0 X )δ such that for any set S and any continuous

map X // Sδ , there exists a unique map πét
0 X // S such that the diagram

X

��????????
// Sδ .

(πét
0 X )δ

??�������

8.1.7. — Note that a space X is connected if and only if πét
0 X = ?.

Warning 8.1.8. — Note that this definition of π0 is a little strange. In particular, the definition is nonconstructive
in the sense that it is not clear from the definition alone that πét

0 X exists for a given space X . In fact, it may very
well not exist: in the case of Q with the subspace topology, for instance, there is no πét

0 .
However, it’s much easier to compute this version of π0 than it is to compute other variants, at least once you get

used to checking universal properties. This is primarily because it involves finding maps out of your space.
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Exercise 62. — Recall that for any collection of spaces {Vα}α∈Λ, the topological disjoint union
∐

α∈ΛVα is the set-
theoretic disjoint union

∐

α∈ΛVα equipped with the following topology: an open set U ⊂
∐

α∈ΛVα is open if and
only if each intersection U ∩Vα is open in Vα.

Now for any space V , a decomposition of V is a collection of subspaces Vα ⊂ V — called summands — such
that V can be written as

∐

α∈ΛVα. Show that there is a bijective correspondence between decompositions V =
∐

α∈ΛVα and continuous maps V //Λδ . Let us call a decomposition V =
∐

α∈ΛVα nondegenerate if and only if
the corresponding map V //Λδ is surjective, or, equivalently, if no summand Vα is empty.

Show that a space X is connected if and only if it is nonempty and admits no nondegenerate decomposition.
Show that if X is a space such that πét

0 X exists, then the continuous map X //πét
0 X is surjective. Conclude that

πét
0 X exists if and only if there exists a maximal nondegenerate decomposition of X , i.e., a decomposition of X such

that each summand is connected.

8.1.9. — Let us consider Q with the subspace topology. The only connected subspaces of Q are points. (Proof: if
A⊂Q is a connected subspace containing two distinct points a and b , choose an irrational number a < c < b . Now
consider the map g : A //{0,1}δ given by the rule

g (x) :=

(

0 if x < c ;
1 else.

This is continuous, since g−1{0}= (−∞, c)∩A and g−1{1}= (c ,∞)∩A.) But it is not the case that Q is the disjoint
union of its points, for then points would be open in Q. Hence there is no maximal nondegenerate decomposition
of Q, so πét

0 Q does not exist.

Exercise 63. — Compute πét
0 of the following spaces. (In all these cases, πét

0 exists, so there are no tricks here.)

(63.1) a set S with the discrete topology,
(63.2) the sphere Sn for any n > 0,
(63.3) the set GLn R of n× n invertible matrices with real entries, with the subspace topology from the inclusion

GLn R⊂Rn2
, for n > 0,

(63.4) the set SLn R of n × n matrices with real entries of determinant 1, with the subspace topology from the
inclusion SLn R⊂Rn2

, for n > 0, and
(63.5) the set GLn C of n× n invertible matrices with complex entries, with the subspace topology from the inclu-

sion GLn C⊂Cn2
, for n > 0.

Exercise 64. — Consider the letters of the (English) alphabet A–Z as subspaces of the plane R2. (Consider them in
their simplest possible form, without any thickness of any lines, and without any serifs!) Can you classify all of them
up to homeomorphism? (Hint: if two spaces X and Y are homeomorphic, then their πét

0 agree, and if f : X //Y
is a homeomorphism, then so is f : X −{x} //Y −{ f (x)} for any x ∈X .)

8.1.10. — The construction X � //πét
0 X is functorial in the sense that for any continuous map f : X //Y , there

is a corresponding map πét
0 f : πét

0 X //πét
0 Y if both πét

0 X and πét
0 Y exist. Indeed, the definition implies that there

exists a unique map πét
0 f : πét

0 X //πét
0 Y such that the diagram

X

��

f // Y

��
(πét

0 X )δ
πét

0 f
// (πét

0 Y )δ

commutes.
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8.2. Covering spaces and locally constant sheaves

Definition 8.2.1. — A covering space over a topological space B (called the base) is a continuous map p : E //B
such that every point b ∈ B is contained in an open neighborhood U for which there is a homeomorphism

γU : p−1U // U × (p−1b )δ

such that the diagam

p−1U

p|p−1 U ��????????

γU // U × (p−1b )δ

pr1����������

U
commutes.

Exercise 65. — Show that a covering space is a local homeomorphism.

Exercise 66. — Check that the pullback E ×B B ′ //B ′ of a covering space E //B along any continuous map
B ′ //B is a covering space.

Definition 8.2.2. — A morphism of covering spaces from p ′ : E ′ //B to p : E //B (covering spaces over the same
base) is simply a continuous map f : E ′ // E such that the diagram

E ′

p ′
��?????????

f // E

p
�����������

B

commutes.

Example 8.2.3. — (8.2.3.1) For any space X and any set S, the map ∇(S) : X t(S) ∼=X × Sδ //X is a covering
space. These covering spaces are known as the trivial covering spaces. The corresponding locally constant
sheaves are constant.

(8.2.3.2) Consider again the continuous map pn : S1 // S1 given by z � // zn . This is a covering space too. The
corresponding sheaf assigns to any open set U ⊂ S1 the set of n-th root functions defined on U .

(8.2.3.3) The exponential map exp : C //C× :=C−{0} is a covering map. One can pull this example back to
S1 ⊂ C× to get the covering space R // S1 given by θ � // e2πθ

p
−1 . The corresponding sheaf assigns to

any open set U a logarithm defined on U .

Exercise 67. — Consider the subspace (C− {0})×n ⊂ Cn . Show that for any n-tuple (k1, . . . , kn) of nonnegative
integers, the map

p(k1,...,kn )
: (C−{0})×n // (C−{0})×n

(z1, . . . , zn)
� // (zk1

1 , . . . , zkn
n )

is a covering space. Pull this back to get a covering space on the n-dimensional torus Tn . Now contemplate the fiber
over (1, . . . , 1). Can you draw a picture of this when n = 2?

Definition 8.2.4. — A sheaf F on a space X is locally constant if every point of X is contained in an open neigh-
borhood U such that the restrictionF|U is a constant sheaf.

Theorem 8.2.5. — A local homeomorphism p : E //B is a covering map if and only if the sheaf Γ(E/B) is locally
constant; correspondingly, a sheafF is locally constant if and only if the espace étalé Ét(F ) is a covering space.
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8.2.6. — Under our bijective correspondence between homeomorphism classes of local homeomorphisms and iso-
morphism classes of sheaves, we see that locally constant sheaves correspond (bijectively) to covering spaces. As we
have seen, constant sheaves correspond to trivial covering spaces.

To put this more formally, for any space B , let (LC /B) be the category of locally constant sheaves on B , and let
Cov(B) denote the category of covering spaces with base B . Then our equivalence of categories (LH /B)'S h(B)
restricts to an equivalence of categories (LC /B)'Cov(B).

Exercise? 68. — Show that the only possible locally constant sheaves on the interval [0,1] are constant. (Hint:
SupposeF a locally constant sheaf on [0,1]. Show that there is a finite open cover of [0,1] comprised of intervals
U on which F|U . Now induct on the size of U in order to show that F must be constant. Why doesn’t this
argument work for S1?)

Using this, suppose X any space, and suppose γ a path in X — i.e., a continuous map γ : [0,1] //X . For any
locally constant sheaf G on X , the pullback γ ?G is a constant sheaf. More precisely, for each t ∈ [0,1], show that
there is a unique isomorphism between γ ?G and the constant sheaf FS(t ) at the stalk S(t ) := Gγ (t ). Now if γ is a
loop in X — i.e., a path such that γ (0) = γ (1) = x ∈X —, we have specified two isomorphisms:

Fx =FS(0) //γ ?G FS(1) =Fxoo ,

so we have an automorphism of the stalk Fx . Give an example to show that this autmorphism need not be the
identity.

Definition 8.2.7. — We say that a covering space p : E //X is finite if the fibers of p are finite. If πét
0 X exists,

then we say that it is of finite type if πét
0 E exists, and the fibers of πét

0 p : πét
0 E //πét

0 X are finite. Let us denote by

(Covft /X ) the set of all isomorphism classes of covering spaces of finite type over X .

8.3. The étale fundamental group

8.3.1. — We are now interested in classifying all locally constant sheaves/covering spaces over a connected space
X . In order to do this, we will begin by constructing, for any point x ∈ X , the étale fundamental group πét

1 (X , x)
out of the collection of all covering spaces of finite type over X .

Definition 8.3.2. — Suppose X a space, and suppose x ∈X . For any covering space E //X , a monodromy element
for E at x is an automorphism of the fiber Ex .

A uniform monodromy element at x is an element

γ = (γE ) ∈
∏

E∈(Covft /X )

Aut(Ex )

such that for any morphism φ : E ′ // E of covering spaces of finite type,

E ′x
γE ′

��

φx // Ex

γE

��
E ′x φx

// Ex .

For any two uniform monodromy elements γ and γ ′, one may compose them to obtain

γ ′ ◦ γ := (γ ′E ◦ γE ) ∈
∏

E∈(Covft /X )

Aut(Fx )

The étale fundamental group πét
1 (X , x) is the set of uniform monodromy elements.

Lemma 8.3.3. — The set πét
1 (X , x) is a group under composition.
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Proof. — Since πét
1 (X , x) is given as a subset of a group, we only have to check that πét

1 (X , x) contains the identity
(obvious) and that it is closed under composition. This latter point follows from inspection of the diagram

E ′x
γE ′

��

φx // Ex

γE

��
E ′x

γ ′
E ′

��

φx

// Ex

γ ′E
��

E ′x φx

// Ex .

8.4. Homotopy classes of loops and lifts

Lemma 8.4.1. — Consider the following commutative diagram of spaces

?

��

// E
p
��

Y
f
// B

in which p : E //B is a covering space and Y is connected space. Then a lift of f , if it exists, is unique.

Proof. — Suppose g and h two lifts. Define a map r : Y //{0,1}δ by

r (y) =

(

1 if g (y) = h(y)
0 if not.

I claim r is continuous. Indeed, suppose y ∈ Y ; let U be an open neighborhood of f (y) such that p−1U ∼=U×E f (y).
Let eg , eh ∈ E f (y) be the projections of the element g (y), h(y) to E f (y); then the set

V := g−1(U ×{eg })∩ h−1(U ×{eh})

is open in Y , and one verifies that V ⊂ r−1( f (y)). This shows that r is continuous, and the result follows from the
connectedness of Y .

Lemma 8.4.2. — Unique path lifting ...

Lemma 8.4.3. — In the situation above, assume that Y is locally path connected. Then a lift exists if and only if the
image of π1(Y ) in π1(X ) is contained in the image of π1(E).

Proof. — Necessity is obvious. For sufficiency, define a lift φ : Y // E in the following manner. For any point
y ∈ Y , choose a path γ from the basepoint to y. Then there is a unique lift γ ′ of this path to E ; define φ(y) = γ ′(1).
The assumption guarantees that this is independent of the choice of path.

8.5. Universal covering spaces

Definition 8.5.1. — Suppose X a space, and suppose x ∈ X . Then a universal locally constant sheaf on (X , x) is a
locally constant sheaf E on X along with a germ of a section υ ∈Fx such that for any locally constant sheafF and
any germ σ ∈Fx , there is a unique morphism φ : E //F of sheaves such that φx (υ) = σ .

Exercise 69. — Suppose X a space, and suppose x ∈ X . Show that the universal locally constant sheaf (E ,υ) on
(X , x), if it exists, has the following property: for any locally constant sheafF on X , the map MorX (E ,F ) //Fx ,
φ � //φx (υ) , is a bijection. Deduce that if a universal locally constant sheaf on (X , x) exists, then it is unique up to
a unique isomorphism.
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8.5.2. — There is a natural candidate for the universal locally constant sheaf on a pointed space (X , x).

Definition 8.5.3. — Suppose X a space, and suppose x ∈X . Then a universal covering space over (X , x) is a covering
space u : eX //X along with a point ex ∈ u−1(x) such that for any covering space p : E //X and any point

e ∈ p−1(x), there exists a unique covering space map f : eX // E with the property that f (ex) = e .

Definition 8.5.4. — A space X is said to be well connected if it is path connected, it admits a basis comprised of
path-connected neighborhoods, and any point x is contained in a neighborhood U such that the homomorphism
π1(U , x) //π1(X , x) is trivial.

Theorem 8.5.5. — Suppose X a well connected space. Then X admits a universal covering space. Moreover, it is the
unique connected pointed covering space ( eX ,ex) of X such that π1( eX ,ex) is trivial.

Proof. — Let us construct the corresponding locally constant sheaf. Begin by contemplating the based path space
Πx (X ) ⊂ C (I ,X ), whose points are those paths γ such that γ (0) = x, equipped with the subspace topology. Eval-
uation at 1 gives a continuous map e : Πx (X ) //X Consider now the sheaf of sections Γ(e); for any open set U
of X , define G (U ) as the quotient Γ(e)(U )/∼, where we say that two sections s , t ∈ Γ(e)(U ) are equivalent if they
are homotopic as maps U × I //X rel U ×{0,1}. The result is a presheaf G ; the claim is that its sheafification is
locally constant. To this end, observe that since X is well connected, it admits a base consisting of path connected
open sets U such that the induced homomorphism π1(U ) //π1(X ) is trivial. Over these open sets, the espace
étalé of G is a trivial covering space.

So now we have the corresponding covering space eX . It is the space of homotopy (rel {0,1}) classes of paths
starting at x; evaluation at 1 gives the structure map eX //X . Write ex for the constant map at x. If now we can

check that eX is path connected and that π1( eX ,ex) is trivial, then we are done by 8.4.3.
To show that eX is path connected, consider an equivalence class α of paths. Let f be a representative thereof.

Now for any real number t , let ft (s) = f (s t ). This gives a path from ex to α.
To show that π1( eX ,ex) is trivial, ...

Theorem 8.5.6. — Suppose X admits a universal covering space. Then there is a bijective correspondence between
(Covft /X ) and the set of isomorphism classes of πét

1 (X , x)-sets with finitely many orbits, and under this correspondence,
the connected covering spaces correspond to the transitive πét

1 (X , x)-sets.
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